OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
FORMULA
a(2n) = A174595(n).
a(2n+1) = A016754(n-1) = (2n-1)^2, n>0.
a(4n+1) = A016838(n-1).
a(4n+2) = A016742(n).
a(4n+3) = A016814(n).
a(n)= +3*a(n-4) -3*a(n-8) +a(n-12).
G.f.: -x*(1+x^2+x^3+6*x^4+4*x^5+22*x^6+x^7+25*x^8+4*x^9+9*x^10) / ( (x-1)^3*(1+x)^3*(x^2+1)^3 ). - R. J. Mathar, Dec 01 2010
a(n) = ((16-(1+(-1)^n)*(5+i^n))*n-4*(8-(1+(-1)^n)*(3+i^n)))^2/256, where i=sqrt(-1). - Bruno Berselli, Jan 27 2011 - Apr 09 2011
MATHEMATICA
LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {0, 1, 0, 1, 1, 9, 4, 25, 4, 49, 16, 81}, 80] (* Harvey P. Dale, Apr 01 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 30 2010
STATUS
approved