login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174679
a(4n) = n^2. a(4n+1) = (4n-1)^2. a(4n+2) = (2n)^2. a(4n+3) = (4n+1)^2.
0
0, 1, 0, 1, 1, 9, 4, 25, 4, 49, 16, 81, 9, 121, 36, 169, 16, 225, 64, 289, 25, 361, 100, 441, 36, 529, 144, 625, 49, 729, 196, 841, 64, 961, 256, 1089, 81, 1225, 324, 1369, 100, 1521, 400, 1681, 121, 1849, 484, 2025, 144, 2209, 576
OFFSET
0,6
FORMULA
a(2n) = A174595(n).
a(2n+1) = A016754(n-1) = (2n-1)^2, n>0.
a(4n+1) = A016838(n-1).
a(4n+2) = A016742(n).
a(4n+3) = A016814(n).
a(n)= +3*a(n-4) -3*a(n-8) +a(n-12).
G.f.: -x*(1+x^2+x^3+6*x^4+4*x^5+22*x^6+x^7+25*x^8+4*x^9+9*x^10) / ( (x-1)^3*(1+x)^3*(x^2+1)^3 ). - R. J. Mathar, Dec 01 2010
a(n) = ((16-(1+(-1)^n)*(5+i^n))*n-4*(8-(1+(-1)^n)*(3+i^n)))^2/256, where i=sqrt(-1). - Bruno Berselli, Jan 27 2011 - Apr 09 2011
MATHEMATICA
LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {0, 1, 0, 1, 1, 9, 4, 25, 4, 49, 16, 81}, 80] (* Harvey P. Dale, Apr 01 2018 *)
CROSSREFS
Sequence in context: A061363 A100077 A317739 * A168077 A173536 A014717
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 30 2010
STATUS
approved