login
A341251
Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^9.
10
1, 0, 9, 9, 45, 81, 201, 414, 828, 1650, 3060, 5697, 10131, 17829, 30564, 51543, 85482, 139455, 224527, 356436, 559341, 867405, 1331208, 2022525, 3044331, 4542174, 6720705, 9866794, 14377941, 20804994, 29903823, 42709860, 60631011, 85575855, 120118500, 167716548
OFFSET
9,3
LINKS
FORMULA
G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^9.
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 9):
seq(a(n), n=9..44); # Alois P. Heinz, Feb 07 2021
MATHEMATICA
nmax = 44; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^9, {x, 0, nmax}], x] // Drop[#, 9] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 07 2021
STATUS
approved