login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341250
a(n) = 5*a(n-1) - 4*a(n-3) for n >= 4, where a(1) = 1, a(2) = 3, a(3) = 13.
3
1, 3, 13, 61, 293, 1413, 6821, 32933, 159013, 767781, 3707173, 17899813, 86427941, 417311013, 2014955813, 9729067301, 46976092453, 226820639013, 1095186925861, 5288030259493, 25532868741413, 123283596003621, 595265858980133, 2874197819935013
OFFSET
1,2
FORMULA
Let f(n) = floor(r*floor(s*n)) = A341249(n), where r = 2 + sqrt(2) and s = sqrt(2). Let a(1) = 1. Then a(n) = f(a(n-1)) for n >= 2.
a(n) = (A218989(n-2) + 1)/2. - Hugo Pfoertner, Feb 13 2021
G.f.: x*(-2*x^2 - 2*x + 1)/(4*x^3 - 5*x + 1). - Chai Wah Wu, Feb 15 2021
MATHEMATICA
z = 40; r = 2 + Sqrt[2]; s = Sqrt[2]; f[x_] := Floor[r*Floor[s*x]];
Table[f[n], {n, 1, z}] (* A341249 *)
a[1] = 1; a[n_] := f[a[n - 1]];
Table[a[n], {n, 1, z}] (* A341250 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 13 2021
STATUS
approved