login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046748
Row sums of triangle A046521.
7
1, 3, 13, 61, 295, 1447, 7151, 35491, 176597, 880125, 4390901, 21920913, 109486993, 547018941, 2733608905, 13662695645, 68294088535, 341399727335, 1706739347095, 8532741458075, 42660172763995, 213287735579135, 1066389745361635, 5331765761680895
OFFSET
0,2
COMMENTS
Hankel transform is A082761. - Paul Barry, Apr 14 2010
LINKS
T.-X. He, L. W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Lin. Alg. Applic. 532 (2017) 25-41, p 35.
FORMULA
a(n) = binomial(2*n, n)*Sum_{k=0..n} binomial(n, k)/binomial(2*k, k).
a(n) = 5^n - 2*A046714(n-1), A046714(-1) := 0.
a(n) = 5*a(n-1) - 2*A000108(n-1).
G.f.: sqrt(1-4*x)/(1-5*x).
a(n) = (3*(3*n-2)/n)*a(n-1) - (10*(2*n-3)/n)*a(n-2), n >= 1, a(-1) := 0, a(0)=1 (homogeneous recursion).
a(n) = binomial(2*n,n)*hypergeom([ -n,1 ],[ 1/2 ],-1/4) (hypergeometric 2F1 form).
0 = a(n)*(+400*a(n+1) - 330*a(n+2) + 50*a(n+3)) + a(n+1)*(-30*a(n+1) + 71*a(n+2) - 15*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, May 25 2014
a(n) ~ 5^(n - 1/2). - Vaclav Kotesovec, Jul 07 2016
D-finite with recurrence n*a(n) +3*(-3*n+2)*a(n-1) +10*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jul 23 2017
EXAMPLE
G.f. = 1 + 3*x + 13*x^2 + 61*x^3 + 295*x^4 + 1447*x^5 + 7151*x^6 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Sqrt[ 1 - 4 x] / (1 - 5 x), {x, 0, n}]; (* Michael Somos, May 25 2014 *)
a[ n_] := Binomial[ 2 n, n] Hypergeometric2F1[ -n, 1, 1/2, -1/4]; (* Michael Somos, May 25 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sqrt( 1 - 4*x + x * O(x^n)) / (1 - 5*x), n))}; /* Michael Somos, May 25 2014 */
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 40);
Coefficients(R!( Sqrt(1-4*x)/(1-5*x) )); // G. C. Greubel, Jul 28 2024
(SageMath)
def A046748_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( sqrt(1-4*x)/(1-5*x) ).list()
A046748_list(40) # G. C. Greubel, Jul 28 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Wolfdieter Lang, Dec 11 1999
STATUS
approved