login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046714
Convolution of A000108 (Catalan) with A000351 (powers of 5).
5
1, 6, 32, 165, 839, 4237, 21317, 107014, 536500, 2687362, 13453606, 67326816, 336842092, 1684953360, 8427441240, 42146901045, 210769862895, 1053978959265, 5270372435025, 26353629438315, 131774711311995
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A000108(k)*5^(n-k).
a(n) = 5*a(n-1) + C(n), a(0) = 1.
G.f.: c(x)/(1-5*x), where c(x) = g.f. for Catalan numbers A000108.
Homogeneous recursion: a(n) = (3*(3*n+1)/(n+1))*a(n-1) - (10*(2*n-1)/(n+1))*a(n-2), a(-1) := 0, a(0)=1, n >= 1.
Hypergeometric 2F1 form: 2*a(n) = 5^(n+1) - binomial(2*(n+1), n+1) * hypergeom([ -n-1, 1 ], [ 1/2 ], -1/4).
a(n) ~ (5-sqrt(5))/2 * 5^n. - Vaclav Kotesovec, Jul 07 2016
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-5*x)), {x, 0, 40}], x] (* G. C. Greubel, Jul 28 2024 *)
PROG
(Magma)
[n le 1 select 1 else 5*Self(n-1) + Catalan(n-1): n in [1..40]]; // G. C. Greubel, Jul 28 2024
(SageMath)
@CachedFunction
def A046714(n): return 1 if n==1 else 5*A046714(n-1) + catalan_number(n-1)
[A046714(n) for n in range(1, 41)] # G. C. Greubel, Jul 28 2024
CROSSREFS
Sequence in context: A083320 A097139 A034942 * A129171 A082585 A084326
KEYWORD
easy,nonn
STATUS
approved