login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046712
From the Bruck-Ryser theorem: n == 1 or 2 (mod 4) which are not the sum of 2 squares.
3
6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, 158, 161, 165, 166, 174, 177, 182, 186, 189, 190, 198, 201, 206, 209, 210, 213, 214, 217, 222, 230, 237, 238
OFFSET
1,1
COMMENTS
Intersection of A022544 and A046712. - Reinhard Zumkeller, Aug 16 2011
REFERENCES
M. Hall, Jr., Combinatorial Theory, Wiley, New York, 1986, see Theorem 12.3.2.
LINKS
R. H. Bruck and H. J. Ryser, The nonexistence of certain projective planes, Canad. J. Math., 1 (1949), 88-93.
Eric Weisstein's World of Mathematics, Bruck-Ryser-Chowla Theorem.
MATHEMATICA
Select[Range[240], (Mod[#, 4] == 1 || Mod[#, 4] == 2) && PowersRepresentations[#, 2, 2] == {} & ] (* Jean-François Alcover, Aug 30 2011 *)
Select[Range[250], MemberQ[{1, 2}, Mod[#, 4]]&&SquaresR[2, #]==0&] (* Harvey P. Dale, Apr 01 2015 *)
PROG
(Haskell)
a046712 n = a046712_list !! (n-1)
a046712_list = filter ((`elem` [1, 2]) . (`mod` 4)) a022544_list
-- Reinhard Zumkeller, Aug 16 2011
CROSSREFS
Sequence in context: A064709 A371396 A118129 * A162823 A020171 A122784
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers
STATUS
approved