login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046711
From the Bruck-Ryser theorem: numbers n == 1 or 2 (mod 4) which are also the sum of 2 squares.
4
1, 2, 5, 9, 10, 13, 17, 18, 25, 26, 29, 34, 37, 41, 45, 49, 50, 53, 58, 61, 65, 73, 74, 81, 82, 85, 89, 90, 97, 98, 101, 106, 109, 113, 117, 121, 122, 125, 130, 137, 145, 146, 149, 153, 157, 162, 169, 170, 173, 178, 181, 185, 193, 194, 197, 202, 205, 218, 221, 225
OFFSET
1,2
COMMENTS
Intersection of A001481 and A042963; A000161(a(n)) > 0. - Reinhard Zumkeller, Feb 14 2012
REFERENCES
M. Hall, Jr., Combinatorial Theory, Theorem 12.3.2.
LINKS
R. H. Bruck and H. J. Ryser, The nonexistence of certain projective planes, Canad. J. Math., 1 (1949), 88-93.
MATHEMATICA
max = 225; Flatten[ Table[ a^2 + b^2, {a, 0, Sqrt[max]}, {b, a, Sqrt[max - a^2]}], 1] // Union // Select[#, (1 <= Mod[#, 4] <= 2)& ]& (* Jean-François Alcover, Sep 13 2012 *)
With[{max=15}, Select[Select[Total/@Tuples[Range[0, max]^2, 2], MemberQ[ {1, 2}, Mod[ #, 4]]&]//Union, #<=max^2&]] (* Harvey P. Dale, Jan 14 2017 *)
PROG
(Haskell)
a046711 n = a046711_list !! (n-1)
a046711_list = [x | x <- a042963_list, a000161 x > 0]
-- Reinhard Zumkeller, Aug 16 2011
(Python)
from itertools import count, islice
from sympy import factorint
def A046711_gen(): # generator of terms
return filter(lambda n:0 < n & 3 < 3 and all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()), count(0))
A046711_list = list(islice(A046711_gen(), 30)) # Chai Wah Wu, Jun 28 2022
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers
STATUS
approved