Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 29 2024 06:22:49
%S 1,6,32,165,839,4237,21317,107014,536500,2687362,13453606,67326816,
%T 336842092,1684953360,8427441240,42146901045,210769862895,
%U 1053978959265,5270372435025,26353629438315,131774711311995
%N Convolution of A000108 (Catalan) with A000351 (powers of 5).
%H G. C. Greubel, <a href="/A046714/b046714.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{k=0..n} A000108(k)*5^(n-k).
%F a(n) = 5*a(n-1) + C(n), a(0) = 1.
%F G.f.: c(x)/(1-5*x), where c(x) = g.f. for Catalan numbers A000108.
%F Homogeneous recursion: a(n) = (3*(3*n+1)/(n+1))*a(n-1) - (10*(2*n-1)/(n+1))*a(n-2), a(-1) := 0, a(0)=1, n >= 1.
%F Hypergeometric 2F1 form: 2*a(n) = 5^(n+1) - binomial(2*(n+1), n+1) * hypergeom([ -n-1, 1 ], [ 1/2 ], -1/4).
%F a(n) ~ (5-sqrt(5))/2 * 5^n. - _Vaclav Kotesovec_, Jul 07 2016
%t CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-5*x)), {x,0,40}], x] (* _G. C. Greubel_, Jul 28 2024 *)
%o (Magma)
%o [n le 1 select 1 else 5*Self(n-1) + Catalan(n-1): n in [1..40]]; // _G. C. Greubel_, Jul 28 2024
%o (SageMath)
%o @CachedFunction
%o def A046714(n): return 1 if n==1 else 5*A046714(n-1) + catalan_number(n-1)
%o [A046714(n) for n in range(1,41)] # _G. C. Greubel_, Jul 28 2024
%Y Cf. A000108, A000351.
%K easy,nonn
%O 0,2
%A _Wolfdieter Lang_