login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046716 Coefficients of a special case of Poisson-Charlier polynomials. 15
1, 1, 1, 1, 3, 1, 1, 6, 8, 1, 1, 10, 29, 24, 1, 1, 15, 75, 145, 89, 1, 1, 21, 160, 545, 814, 415, 1, 1, 28, 301, 1575, 4179, 5243, 2372, 1, 1, 36, 518, 3836, 15659, 34860, 38618, 16072, 1, 1, 45, 834, 8274, 47775, 163191, 318926, 321690, 125673, 1, 1, 55, 1275, 16290 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Diagonals : A000012, A000217; A000012, A002104 - Philippe Deléham, Jun 12 2004

The sequence a(n) = Sum_{k = 0..n} T(n,k)*x^(n-k) is the binomial transform of the sequence b(n) = (n+x-1)! / (x-1)! . - Philippe Deléham, Jun 18 2004

LINKS

Table of n, a(n) for n=0..58.

E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.

C. Radoux, Déterminants de Hankel et théorème de Sylvester, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.

FORMULA

Reference gives a recurrence.

Sum_{k = 0..n} T(n, k)*x^(n-k) = A000522(n), A001339(n), A082030(n) for x = 1, 2, 3 respectively. Sum_{k = 0..n} T(n, k)*2^k = A081367(n). - Philippe Deléham, Jun 12 2004

Let P(x, n) = Sum_{k = 0..n} T(n, k)*x^k, then Sum_{n>=0} P(x, n)*t^n / n! = exp(xt)/(1-xt)^(1/x). - Philippe Deléham, Jun 12 2004

T(n, 0) = 1, T(n, k) = (-1)^k * Sum[i=n-k..n, (-1)^i*C(n, i)*S1(i, n-k)], where S1 = Stirling numbers of first kind (A008275).

EXAMPLE

Triangle starts:

1;

1,1;

1,3,1;

1,6,8,1;

1,10,29,24,1;

...

MAPLE

a := proc(n, k) option remember;

   if k = 0 then 1

elif k < 0 then 0

elif k = n then (-1)^n

else a(n-1, k) - n*a(n-1, k-1) - (n-1)*a(n-2, k-2) fi end:

A046716 := (n, k) -> abs(a(n, k));

seq(seq(A046716(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 05 2011

MATHEMATICA

t[_, 0] = 1; t[n_, k_] := (-1)^k*Sum[(-1)^i*Binomial[n, i]*StirlingS1[i, n-k], {i, n-k, n}]; Table[t[n, k] // Abs, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)

CROSSREFS

Sequence in context: A056858 A137251 A158359 * A202605 A298636 A123354

Adjacent sequences:  A046713 A046714 A046715 * A046717 A046718 A046719

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vladeta Jovovic, Jun 15 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 23:26 EST 2019. Contains 329242 sequences. (Running on oeis4.)