login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158359
Triangle T(n,k) read by rows: coefficient [x^(n-k)] of the characteristic polynomial of the n X n matrix A(r,c)=1 (if c > r) and A(r,c)=c (if c <= r).
2
1, 1, -1, 1, -3, 1, 1, -6, 7, -2, 1, -10, 25, -23, 6, 1, -15, 65, -123, 98, -24, 1, -21, 140, -448, 713, -514, 120, 1, -28, 266, -1288, 3401, -4792, 3204, -720, 1, -36, 462, -3150, 12417, -28599, 36748, -23148, 5040, 1, -45, 750, -6846, 37617, -127935, 265540, -317132, 190224, -40320, 1, -55
OFFSET
0,5
COMMENTS
The building matrices A(r,c) have the form [[1,1,1,...],[1,2,1,1,1...],[1,2,3,1,1,...],...,[1,2,3,4,...,n]].
Their determinant and the product of the roots of their characteristic polynomial is (n-1)!.
FORMULA
Sum_{k=0..n} |T(n,k)| = A000522(n).
EXAMPLE
First few characteristic polynomials are:
1;
x - 1;
x^2 - 3x + 1;
x^3 - 6x^2 + 7x - 2;
x^4 - 10x^3 + 25x^2 - 23x + 6;
x^5 - 15x^4 + 65x^3 - 123x^2 + 98x - 24;
x^6 - 21x^5 + 140x^4 - 448x^3 + 713x^2 - 514x + 120;
x^7 - 28x^6 + 266x^5 - 1288x^4 + 3401x^3 - 4792x^2 + 3204x - 720;
x^8 - 36x^7 + 462x^6 - 3150x^5 + 12417x^4 - 28599x^3 + 36748x^2 - 23148x + 5040;
x^9 - 45x^8 + 750x^7 - 6846x^6 + 37617x^5 - 127935x^4 + 265540x^3 - 317132x^2 + 190224x - 40320;
x^10 - 55x^9 + 1155x^8 - 13596x^7 + 99231x^6 - 466488x^5 + 1416955x^4 - 2706992x^3 + 3044412x^2 - 1752336x + 362880
...
Example: 3x3 matrix = [1,1,1; 1,2,1; 1,2,3]; charpoly = x^3 - 6x^2 + 7x - 2,
determinant = 2.
MAPLE
A158359 := proc(n, k)
A := Matrix(1..n, 1..n) ;
for r from 1 to n do
for c from 1 to n do
if c > r then
A[r, c] := 1 ;
else
A[r, c] := c;
end if;
end do;
end do;
LinearAlgebra[CharacteristicPolynomial](A, x) ;
coeftayl(%, x=0, n-k) ;
end proc:
seq(seq(A158359(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Nov 05 2011
CROSSREFS
Cf. A000522.
Sequence in context: A056858 A137251 A370757 * A046716 A371967 A202605
KEYWORD
sign,tabl,easy
AUTHOR
STATUS
approved