login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097139
Convolution of 5^n and floor(n/2).
2
0, 0, 1, 6, 32, 162, 813, 4068, 20344, 101724, 508625, 2543130, 12715656, 63578286, 317891437, 1589457192, 7947285968, 39736429848, 198682149249, 993410746254, 4967053731280, 24835268656410, 124176343282061, 620881716410316
OFFSET
0,4
COMMENTS
a(n+1) gives partial sums of A033115 and second partial sums of A015531.
Partial sums of (1/4)*floor(5^n/6) = (1/3)*floor(5^n/8). - Mircea Merca, Dec 27 2010
FORMULA
a(n) = 5^(n+1)/96 -n/8 -3/32 +(-1)^n/24. - R. J. Mathar, Jan 08 2011
G.f.: x^2/((1-x)*(1-5*x)*(1-x^2)).
a(n) = 6*a(n-1) - 4*a(n-2) - 6*a(n-3) + 5*a(n-4).
a(n) = Sum_{k=0..n} floor((n-k)/2)*4^k = Sum_{k=0..n} floor(k/2)*4^(n-k).
From Mircea Merca, Dec 27 2010: (Start)
4*a(n) = round((5*5^n-12*n-9)/24) = floor((5*5^n-12*n-5)/24) = ceiling((5*5^n-12*n-13)/24) = round((5*5^n-12*n-5)/24).
a(n) = a(n-2) + (5^(n-1)-1)/4, n>1. (End)
a(n) = (floor(5^(n+1)/24) - floor((n+1)/2))/4. - Seiichi Manyama, Dec 22 2023
MAPLE
A097139 := proc(n) 5^(n+1)/96 -n/8 -3/32 +(-1)^n/24 ; end proc: # R. J. Mathar, Jan 08 2011
MATHEMATICA
f[n_] := Floor[5^n/6]/4; Accumulate@ Array[f, 24, 0]
a[n_] := a[n] = 6 a[n - 1] - 4 a[n - 2] - 6 a[n - 3] + 5 a[n - 4]; a[0] = a[1] = 0; a[2] = 1; a[3] = 6; Array[a, 24, 0]
CoefficientList[ Series[x^2/((1 - x) (1 - 5 x) (1 - x^2)), {x, 0, 23}], x] (* Robert G. Wilson v, Jan 02 2011 *)
LinearRecurrence[{6, -4, -6, 5}, {0, 0, 1, 6}, 30] (* Harvey P. Dale, Mar 16 2019 *)
PROG
(Magma) [5^(n+1)/96 -n/8 -3/32 +(-1)^n/24: n in [0..30]]; // Vincenzo Librandi, Jun 25 2011
CROSSREFS
Column k=5 of A368296.
Sequence in context: A232494 A037530 A083320 * A034942 A046714 A129171
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 29 2004
STATUS
approved