login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolution of 5^n and floor(n/2).
2

%I #39 May 09 2024 09:08:06

%S 0,0,1,6,32,162,813,4068,20344,101724,508625,2543130,12715656,

%T 63578286,317891437,1589457192,7947285968,39736429848,198682149249,

%U 993410746254,4967053731280,24835268656410,124176343282061,620881716410316

%N Convolution of 5^n and floor(n/2).

%C a(n+1) gives partial sums of A033115 and second partial sums of A015531.

%C Partial sums of (1/4)*floor(5^n/6) = (1/3)*floor(5^n/8). - _Mircea Merca_, Dec 27 2010

%H Vincenzo Librandi, <a href="/A097139/b097139.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-4,-6,5).

%F a(n) = 5^(n+1)/96 -n/8 -3/32 +(-1)^n/24. - _R. J. Mathar_, Jan 08 2011

%F G.f.: x^2/((1-x)*(1-5*x)*(1-x^2)).

%F a(n) = 6*a(n-1) - 4*a(n-2) - 6*a(n-3) + 5*a(n-4).

%F a(n) = Sum_{k=0..n} floor((n-k)/2)*4^k = Sum_{k=0..n} floor(k/2)*4^(n-k).

%F From _Mircea Merca_, Dec 27 2010: (Start)

%F 4*a(n) = round((5*5^n-12*n-9)/24) = floor((5*5^n-12*n-5)/24) = ceiling((5*5^n-12*n-13)/24) = round((5*5^n-12*n-5)/24).

%F a(n) = a(n-2) + (5^(n-1)-1)/4, n>1. (End)

%F a(n) = (floor(5^(n+1)/24) - floor((n+1)/2))/4. - _Seiichi Manyama_, Dec 22 2023

%p A097139 := proc(n) 5^(n+1)/96 -n/8 -3/32 +(-1)^n/24 ; end proc: # _R. J. Mathar_, Jan 08 2011

%t f[n_] := Floor[5^n/6]/4; Accumulate@ Array[f, 24, 0]

%t a[n_] := a[n] = 6 a[n - 1] - 4 a[n - 2] - 6 a[n - 3] + 5 a[n - 4]; a[0] = a[1] = 0; a[2] = 1; a[3] = 6; Array[a, 24, 0]

%t CoefficientList[ Series[x^2/((1 - x) (1 - 5 x) (1 - x^2)), {x, 0, 23}], x] (* _Robert G. Wilson v_, Jan 02 2011 *)

%t LinearRecurrence[{6,-4,-6,5},{0,0,1,6},30] (* _Harvey P. Dale_, Mar 16 2019 *)

%o (Magma) [5^(n+1)/96 -n/8 -3/32 +(-1)^n/24: n in [0..30]]; // _Vincenzo Librandi_, Jun 25 2011

%Y Column k=5 of A368296.

%K easy,nonn

%O 0,4

%A _Paul Barry_, Jul 29 2004