login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368296
Square array T(n,k), n >= 2, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * floor(j/2).
9
1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 4, 8, 6, 3, 1, 5, 14, 18, 9, 3, 1, 6, 22, 44, 39, 12, 4, 1, 7, 32, 90, 135, 81, 16, 4, 1, 8, 44, 162, 363, 408, 166, 20, 5, 1, 9, 58, 266, 813, 1455, 1228, 336, 25, 5, 1, 10, 74, 408, 1599, 4068, 5824, 3688, 677, 30, 6
OFFSET
2,5
LINKS
FORMULA
T(n,k) = T(n-2,k) + Sum_{j=0..n-2} k^j.
T(n,k) = 1/(k+1) * (-floor((n+1)/2) + Sum_{j=1..n} j*k^(n-j)).
T(n,k) = 1/(k-1) * Sum_{j=0..n} floor(k^j/(k+1)) = Sum_{j=0..n} floor(k^j/(k^2-1)) for k > 1.
T(n,k) = (k+1)*T(n-1,k) - (k-1)*T(n-2,k) - (k+1)*T(n-3,k) + k*T(n-4,k).
G.f. of column k: x^2/((1-x) * (1-k*x) * (1-x^2)).
T(n,k) = 1/(k-1) * (floor(k^(n+1)/(k^2-1)) - floor((n+1)/2)) for k > 1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 4, 8, 14, 22, 32, 44, ...
2, 6, 18, 44, 90, 162, 266, ...
3, 9, 39, 135, 363, 813, 1599, ...
3, 12, 81, 408, 1455, 4068, 9597, ...
4, 16, 166, 1228, 5824, 20344, 57586, ...
PROG
(PARI) T(n, k) = (-((n+1)\2)+sum(j=1, n, j*k^(n-j)))/(k+1);
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Seiichi Manyama, Dec 20 2023
STATUS
approved