login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178730
Partial sums of floor(7^n/8)/6.
2
0, 1, 8, 58, 408, 2859, 20016, 140116, 980816, 6865717, 48060024, 336420174, 2354941224, 16484588575, 115392120032, 807744840232, 5654213881632, 39579497171433, 277056480200040, 1939395361400290, 13575767529802040, 95030372708614291, 665212608960300048, 4656488262722100348, 32595417839054702448
OFFSET
1,3
COMMENTS
Partial sums of A033117.
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
6*a(n) = round((7*7^n - 24*n - 16)/48).
6*a(n) = floor((7*7^n - 24*n - 7)/48).
6*a(n) = ceiling((7*7^n - 24*n - 25)/48).
6*a(n) = round((7*7^n - 24*n - 7)/48).
a(n) = a(n-2) + (7^(n-1) - 1)/6, n > 2.
a(n) = 8*a(n-1) - 6*a(n-2) - 8*a(n-3) + 7*a(n-4), n > 4.
G.f.: x^2/((1+x)*(1-7*x)*(1-x)^2).
a(n) = (7^(n+1) - 24*n + 9*(-1)^n - 16)/288. - Bruno Berselli, Jan 11 2011
a(n) = (floor(7^(n+1)/48) - floor((n+1)/2))/6. - Seiichi Manyama, Dec 22 2023
EXAMPLE
a(3) = (1/6)*(floor(7/8) + floor(7^2/8) + floor(7^3/8)) = (1/6)*(0+6+42) = 8.
MAPLE
A178730 := proc(n) add( floor(7^i/8)/6, i=0..n) ; end proc:
MATHEMATICA
CoefficientList[Series[x/((1+x)(1-7x)(1-x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
PROG
(Magma) [Floor((7*7^n-24*n-7)/48)/6: n in [1..30]]; // Vincenzo Librandi, Jun 21 2011
(PARI) vector(30, n, (((7^(n+1)-24*n-7)/48)\1)/6) \\ G. C. Greubel, Jan 24 2019
(Sage) [floor((7^(n+1)-24*n-7)/48)/6 for n in (1..30)] # G. C. Greubel, Jan 24 2019
CROSSREFS
Column k=7 of A368296.
Cf. A033117.
Sequence in context: A273584 A037532 A062236 * A190978 A254663 A126529
KEYWORD
nonn,less
AUTHOR
Mircea Merca, Dec 26 2010
STATUS
approved