OFFSET
1,3
COMMENTS
Partial sums of A033117.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (8,-6,-8,7).
FORMULA
6*a(n) = round((7*7^n - 24*n - 16)/48).
6*a(n) = floor((7*7^n - 24*n - 7)/48).
6*a(n) = ceiling((7*7^n - 24*n - 25)/48).
6*a(n) = round((7*7^n - 24*n - 7)/48).
a(n) = a(n-2) + (7^(n-1) - 1)/6, n > 2.
a(n) = 8*a(n-1) - 6*a(n-2) - 8*a(n-3) + 7*a(n-4), n > 4.
G.f.: x^2/((1+x)*(1-7*x)*(1-x)^2).
a(n) = (7^(n+1) - 24*n + 9*(-1)^n - 16)/288. - Bruno Berselli, Jan 11 2011
a(n) = (floor(7^(n+1)/48) - floor((n+1)/2))/6. - Seiichi Manyama, Dec 22 2023
EXAMPLE
a(3) = (1/6)*(floor(7/8) + floor(7^2/8) + floor(7^3/8)) = (1/6)*(0+6+42) = 8.
MAPLE
A178730 := proc(n) add( floor(7^i/8)/6, i=0..n) ; end proc:
MATHEMATICA
CoefficientList[Series[x/((1+x)(1-7x)(1-x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
PROG
(Magma) [Floor((7*7^n-24*n-7)/48)/6: n in [1..30]]; // Vincenzo Librandi, Jun 21 2011
(PARI) vector(30, n, (((7^(n+1)-24*n-7)/48)\1)/6) \\ G. C. Greubel, Jan 24 2019
(Sage) [floor((7^(n+1)-24*n-7)/48)/6 for n in (1..30)] # G. C. Greubel, Jan 24 2019
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Mircea Merca, Dec 26 2010
STATUS
approved