login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190978
a(n) = 8*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.
5
0, 1, 8, 58, 416, 2980, 21344, 152872, 1094912, 7842064, 56167040, 402283936, 2881269248, 20636450368, 147803987456, 1058613197440, 7582081654784, 54304974053632, 388947302500352, 2785748575681024, 19952304790446080, 142903946869482496, 1023517746213183488
OFFSET
0,3
LINKS
Pamela Fleischmann, Jonas Höfer, Annika Huch, and Dirk Nowotka, alpha-beta-Factorization and the Binary Case of Simon's Congruence, arXiv:2306.14192 [math.CO], 2023.
FORMULA
a(n) = ((4 + sqrt(10))^n - (4 - sqrt(10))^n)/(2*sqrt(10)). - Giorgio Balzarotti, May 28 2011
G.f.: x/(1 - 8*x + 6*x^2). - Philippe Deléham, Oct 12 2011
From G. C. Greubel, Jun 17 2022: (Start)
a(n) = 6^((n-1)/2)*ChebyshevU(n-1, 4/sqrt(6)).
E.g.f.: (1/sqrt(10))*exp(4*x)*sinh(sqrt(10)*x). (End)
MATHEMATICA
LinearRecurrence[{8, -6}, {0, 1}, 50]
CoefficientList[Series[x/(1-8x+6x^2), {x, 0, 30}], x] (* Harvey P. Dale, Aug 03 2021 *)
PROG
(Magma) [n le 2 select n-1 else 8*Self(n-1) -6*Self(n-2): n in [1..41]]; // G. C. Greubel, Jun 17 2022
(SageMath) [sum( (-1)^k*binomial(n-k-1, k)*6^k*8^(n-2*k-1) for k in (0..((n-1)//2))) for n in (0..40)] # G. C. Greubel, Jun 17 2022
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A037532 A062236 A178730 * A254663 A126529 A039759
KEYWORD
nonn
AUTHOR
STATUS
approved