login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039759
Number of edges in the Hasse diagrams for the B-analogs of the partition lattices.
3
0, 1, 8, 58, 432, 3396, 28384, 252456, 2385280, 23874448, 252380800, 2809461920, 32841595136, 402105388608, 5144478074368, 68625615724160, 952603633463296, 13735016459768064, 205358227932235776, 3179027634604907008, 50881656554805620736, 840901491722391454720, 14332437167995507302400
OFFSET
0,3
LINKS
R. Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
FORMULA
E.g.f.: 1/4 * (exp(4*x)-1) * exp(1/2*exp(2*x)+x-1/2).
MATHEMATICA
max = 18; CoefficientList[ Series[1/4*E^x*(E^(4*x) - 1)*E^((1/2)*(E^(2*x) - 1)), {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 04 2013, after e.g.f. *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec( serlaplace( 1/4*(exp(4*x)-1)*exp(1/2*exp(2*x)+x-1/2) ) ) ) \\ Joerg Arndt, Oct 04 2013
CROSSREFS
Edges in the Hasse diagrams for partition lattices: A003128, D-analogs = A039765.
Sequence in context: A190978 A254663 A126529 * A244939 A047867 A002538
KEYWORD
nonn
AUTHOR
Ruedi Suter (suter(AT)math.ethz.ch)
STATUS
approved