login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039760
Triangle of D-analogs of Stirling numbers of the 2nd kind.
3
1, 0, 1, 1, 2, 1, 1, 7, 6, 1, 1, 24, 34, 12, 1, 1, 81, 190, 110, 20, 1, 1, 268, 1051, 920, 275, 30, 1, 1, 869, 5747, 7371, 3255, 581, 42, 1, 1, 2768, 31060, 57568, 35686, 9296, 1092, 56, 1, 1, 8689, 166068, 441652, 373926, 134022, 22764, 1884, 72, 1
OFFSET
0,5
LINKS
Eli Bagno, Riccardo Biagioli, and David Garber, Some identities involving second kind Stirling numbers of types B and D, arXiv:1901.07830 [math.CO], 2019.
Ruedi Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
FORMULA
Bivariate e.g.f.-o.g.f.: (exp(x) - x)*exp(y/2*(exp(2*x) - 1)). [See Theorem 4 in Suter (2000).]
T(n,k) = Sum_{j=k..n} 2^(j-k)*binomial(n,j)*Stirling2(j,k) - 2^(n-1-k)*n*Stirling2(n-1,k). [See Proposition 3 in Suter (2000).] - Petros Hadjicostas, Jul 11 2020
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k=0..n) begins:
1;
0, 1;
1, 2, 1;
1, 7, 6, 1;
1, 24, 34, 12, 1;
1, 81, 190, 110, 20, 1;
1, 268, 1051, 920, 275, 30, 1;
...
MATHEMATICA
With[{m = 10}, CoefficientList[CoefficientList[Series[(Exp[x]-x)* Exp[y/2*(Exp[2*x]-1)], {y, 0, m}, {x, 0, m}], x], y]*(Range[0, m]!)] (* G. C. Greubel, Mar 07 2019 *)
PROG
(PARI) T(n, k)=if(k<0||k>n, 0, n!*polcoeff(polcoeff((exp(x)-x)*exp(y/2*(exp(2*x)-1)), n), k));
tabl(nn) = {x = 'x + O('x^nn); for (n=0, nn, for (m=0, n, print1(T(n, m), ", "); ); print(); ); } \\ Michel Marcus, May 03 2015
CROSSREFS
Cf. A039761 (transposed triangle).
Sequence in context: A333142 A196832 A005450 * A156882 A266309 A122021
KEYWORD
nonn,tabl
AUTHOR
Ruedi Suter (suter(AT)math.ethz.ch)
STATUS
approved