login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039762
Triangle of D-analogs of Stirling numbers of first kind.
1
1, 0, 1, 1, -2, 1, -6, 11, -6, 1, 45, -84, 50, -12, 1, -420, 809, -520, 150, -20, 1, 4725, -9390, 6439, -2100, 355, -30, 1, -62370, 127539, -92358, 33019, -6510, 721, -42, 1, 945945, -1984584, 1505524, -578984, 127694, -16856, 1316, -56, 1, -16216200, 34812945, -27491616, 11228300, -2702448, 405174, -38304, 2220, -72, 1
OFFSET
0,5
LINKS
Ruedi Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
FORMULA
From Petros Hadjicostas, Jul 11 2020: (Start)
T(n,k) = [x^k] (x - (n - 1)) * Product_{k=1..n-1} (x - (2*k - 1)) for n >= 1 with T(0,0) = 1. (Empty products equal 1.)
Let R(n,k) = A039757(n,k) = A039758(n,n-k). Then, for n >= 1:
T(n,0) = -(n - 1)*R(n-1,0);
T(n,k) = R(n-1,k-1) - (n - 1)*R(n-1,k) for k = 1..n-1;
T(n,n) = R(n-1, n-1) = 1.
As a result, for n >= 2, T(n,0) = (-1)^n*(n-1)*(2*n-3)!!. (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
0, 1;
1, -2, 1;
-6, 11, -6, 1;
45, -84, 50, -12, 1;
-420, 809, -520, 150, -20, 1;
...
PROG
(PARI) row(n) = if(n==0, [1], Vecrev(prod(i=1, n-1, x-2*i+1)*(x-n+1))); \\ Petros Hadjicostas, Jul 12 2020
CROSSREFS
Cf. A039757, A039758, A039763 (transposed triangle).
Sequence in context: A305512 A121927 A200265 * A039795 A283746 A049949
KEYWORD
tabl,sign,easy,nice
AUTHOR
Ruedi Suter (suter(AT)math.ethz.ch)
EXTENSIONS
More terms from Petros Hadjicostas, Jul 12 2020
STATUS
approved