Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Jul 13 2020 02:18:58
%S 1,0,1,1,2,1,1,7,6,1,1,24,34,12,1,1,81,190,110,20,1,1,268,1051,920,
%T 275,30,1,1,869,5747,7371,3255,581,42,1,1,2768,31060,57568,35686,9296,
%U 1092,56,1,1,8689,166068,441652,373926,134022,22764,1884,72,1
%N Triangle of D-analogs of Stirling numbers of the 2nd kind.
%H G. C. Greubel, <a href="/A039760/b039760.txt">Rows n=0..100 of triangle, flattened</a>
%H Eli Bagno, Riccardo Biagioli, and David Garber, <a href="https://arxiv.org/abs/1901.07830">Some identities involving second kind Stirling numbers of types B and D</a>, arXiv:1901.07830 [math.CO], 2019.
%H Ruedi Suter, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/SUTER/sut1.html">Two analogues of a classical sequence</a>, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
%F Bivariate e.g.f.-o.g.f.: (exp(x) - x)*exp(y/2*(exp(2*x) - 1)). [See Theorem 4 in Suter (2000).]
%F T(n,k) = Sum_{j=k..n} 2^(j-k)*binomial(n,j)*Stirling2(j,k) - 2^(n-1-k)*n*Stirling2(n-1,k). [See Proposition 3 in Suter (2000).] - _Petros Hadjicostas_, Jul 11 2020
%e Triangle T(n,k) (with rows n >= 0 and columns k=0..n) begins:
%e 1;
%e 0, 1;
%e 1, 2, 1;
%e 1, 7, 6, 1;
%e 1, 24, 34, 12, 1;
%e 1, 81, 190, 110, 20, 1;
%e 1, 268, 1051, 920, 275, 30, 1;
%e ...
%t With[{m = 10}, CoefficientList[CoefficientList[Series[(Exp[x]-x)* Exp[y/2*(Exp[2*x]-1)], {y, 0, m}, {x, 0, m}], x], y]*(Range[0, m]!)] (* _G. C. Greubel_, Mar 07 2019 *)
%o (PARI) T(n, k)=if(k<0||k>n, 0, n!*polcoeff(polcoeff((exp(x)-x)*exp(y/2*(exp(2*x)-1)), n), k));
%o tabl(nn) = {x = 'x + O('x^nn); for (n=0, nn, for (m=0, n, print1(T(n, m), ", ");); print(););} \\ _Michel Marcus_, May 03 2015
%Y Cf. A039761 (transposed triangle).
%K nonn,tabl
%O 0,5
%A Ruedi Suter (suter(AT)math.ethz.ch)