login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190977
a(n) = 8*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.
3
0, 1, 8, 59, 432, 3161, 23128, 169219, 1238112, 9058801, 66279848, 484944779, 3548158992, 25960548041, 189943589368, 1389745974739, 10168249851072, 74397268934881, 544336902223688, 3982708873115099, 29139986473802352, 213206347424843321, 1559950847029734808
OFFSET
0,3
FORMULA
a(n) = ((4 + sqrt(11))^n - (4 - sqrt(11))^n)/(2*sqrt(11)). - Giorgio Balzarotti, May 28 2011
G.f.: x/(1 - 8*x + 5*x^2). - Philippe Deléham, Oct 12 2011
From G. C. Greubel, Jun 17 2022: (Start)
a(n) = 5^((n-1)/2)*ChebyshevU(n-1, 4/sqrt(5)).
E.g.f.: (1/sqrt(11))*exp(4*x)*sinh(sqrt(11)*x). (End)
MATHEMATICA
LinearRecurrence[{8, -5}, {0, 1}, 50]
PROG
(Magma) [n le 2 select n-1 else 8*Self(n-1) -5*Self(n-2): n in [1..41]]; // G. C. Greubel, Jun 17 2022
(SageMath) [sum( (-1)^k*binomial(n-k-1, k)*5^k*8^(n-2*k-1) for k in (0..((n-1)//2))) for n in (0..40)] # G. C. Greubel, Jun 17 2022
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A263503 A343089 A112424 * A254662 A186362 A285231
KEYWORD
nonn
AUTHOR
STATUS
approved