login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190976
a(n) = 8*a(n-1) - 3*a(n-2), with a(0)=0, a(1)=1.
4
0, 1, 8, 61, 464, 3529, 26840, 204133, 1552544, 11807953, 89805992, 683024077, 5194774640, 39509124889, 300488675192, 2285382026869, 17381590189376, 132196575434401, 1005427832907080, 7646832936953437, 58158379996906256, 442326541164389737
OFFSET
0,3
FORMULA
a(n) = ((4 + sqrt(13))^n - (4 - sqrt(13))^n)/(2*sqrt(13)). - Giorgio Balzarotti, May 28 2011
G.f.: x/(1 - 8*x + 3*x^2). - Philippe Deléham, Oct 12 2011
From G. C. Greubel, Jun 11 2022: (Start)
a(n) = 3^((n-1)/2)*ChebyshevU(n-1, 4/sqrt(3)).
E.g.f.: (1/sqrt(13))*exp(4*x)*sinh(sqrt(13)*x). (End)
MATHEMATICA
LinearRecurrence[{8, -3}, {0, 1}, 50]
PROG
(Magma) [n le 2 select n-1 else 8*Self(n-1) - 3*Self(n-2): n in [1..51]]; // G. C. Greubel, Jun 11 2022
(SageMath) [lucas_number1(n, 8, 3) for n in (0..50)] # G. C. Greubel, Jun 11 2022
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A283410 A081907 A278596 * A254602 A363571 A361772
KEYWORD
nonn,easy
AUTHOR
STATUS
approved