login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190973
a(n) = 7*a(n-1) - 4*a(n-2), with a(0) = 0, a(1) = 1.
3
0, 1, 7, 45, 287, 1829, 11655, 74269, 473263, 3015765, 19217303, 122458061, 780337215, 4972528261, 31686348967, 201914329725, 1286654912207, 8198927066549, 52245869817015, 332925380452909, 2121494183902303, 13518757765504485, 86145327622922183
OFFSET
0,3
FORMULA
a(n) = ((7/2 + 1/2*sqrt(33))^n - (7/2 - 1/2*sqrt(33))^n)/sqrt(33). - Giorgio Balzarotti, May 28 2011
G.f.: x/(1 - 7*x + 4*x^2). - Philippe Deléham, Oct 12 2011
MAPLE
seq( simplify(2^(n-1)*ChebyshevU(n-1, 7/4)), n=0..30); # G. C. Greubel, Dec 24 2019
MATHEMATICA
LinearRecurrence[{7, -4}, {0, 1}, 30]
Table[2^(n - 1) * ChebyshevU[n - 1, 7/4], {n, 0, 30}] (* G. C. Greubel, Dec 24 2019 *)
PROG
(PARI) vector(31, n, 2^(n-2)*polchebyshev(n-2, 2, 7/4) ) \\ G. C. Greubel, Dec 24 2019
(Magma) I:=[0, 1]; [n le 2 select I[n] else 7*Self(n-1) - 4*Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 24 2019
(Sage) [2^(n-1)*chebyshev_U(n-1, 7/4) for n in (0..30)] # G. C. Greubel, Dec 24 2019
(GAP) a:=[0, 1];; for n in [3..30] do a[n]:=7*a[n-1]-4*a[n-2]; od; a; # G. C. Greubel, Dec 24 2019
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A236194 A230760 A198629 * A099842 A287811 A115194
KEYWORD
nonn
AUTHOR
STATUS
approved