login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7*a(n-1) - 4*a(n-2), with a(0) = 0, a(1) = 1.
3

%I #28 Sep 08 2022 08:45:57

%S 0,1,7,45,287,1829,11655,74269,473263,3015765,19217303,122458061,

%T 780337215,4972528261,31686348967,201914329725,1286654912207,

%U 8198927066549,52245869817015,332925380452909,2121494183902303,13518757765504485,86145327622922183

%N a(n) = 7*a(n-1) - 4*a(n-2), with a(0) = 0, a(1) = 1.

%H G. C. Greubel, <a href="/A190973/b190973.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-4).

%F a(n) = ((7/2 + 1/2*sqrt(33))^n - (7/2 - 1/2*sqrt(33))^n)/sqrt(33). - _Giorgio Balzarotti_, May 28 2011

%F G.f.: x/(1 - 7*x + 4*x^2). - _Philippe Deléham_, Oct 12 2011

%p seq( simplify(2^(n-1)*ChebyshevU(n-1, 7/4)), n=0..30); # _G. C. Greubel_, Dec 24 2019

%t LinearRecurrence[{7, -4}, {0, 1}, 30]

%t Table[2^(n - 1) * ChebyshevU[n - 1, 7/4], {n, 0, 30}] (* _G. C. Greubel_, Dec 24 2019 *)

%o (PARI) vector(31, n, 2^(n-2)*polchebyshev(n-2, 2, 7/4) ) \\ _G. C. Greubel_, Dec 24 2019

%o (Magma) I:=[0,1]; [n le 2 select I[n] else 7*Self(n-1) - 4*Self(n-2): n in [1..20]]; // _G. C. Greubel_, Dec 24 2019

%o (Sage) [2^(n-1)*chebyshev_U(n-1,7/4) for n in (0..30)] # _G. C. Greubel_, Dec 24 2019

%o (GAP) a:=[0,1];; for n in [3..30] do a[n]:=7*a[n-1]-4*a[n-2]; od; a; # _G. C. Greubel_, Dec 24 2019

%Y Cf. A190958 (index to generalized Fibonacci sequences).

%K nonn

%O 0,3

%A _Vladimir Joseph Stephan Orlovsky_, May 24 2011