login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099842
Expansion of (1-x)/(1 + 6*x - 3*x^2).
5
1, -7, 45, -291, 1881, -12159, 78597, -508059, 3284145, -21229047, 137226717, -887047443, 5733964809, -37064931183, 239591481525, -1548743682699, 10011236540769, -64713650292711, 418315611378573, -2704034619149571, 17479154549033145, -112987031151647583
OFFSET
0,2
COMMENTS
A transformation of x/(1-2*x-2*x^2).
The g.f. is the transform of the g.f. of A002605 under the mapping G(x) -> (-1/(1+x))*G((x-1)/(x+1)). In general this mapping transforms x/(1-k*x-k*x^2) into (1-x)/(1+2*(k+1)*x-(2*k-1)*x^2).
For n >= 1, |a(n)| equals the numbers of words of length n-1 on alphabet {0,1,...,6} containing no subwords 00, 11, 22, 33. - Milan Janjic, Jan 31 2015
FORMULA
G.f.: (1-x)/(1+6*x-3*x^2).
a(n) = (1/2 - sqrt(3)/3)*(-3 + 2*sqrt(3))^n + (1/2 + sqrt(3)/3)*(-3 - 2*sqrt(3))^n.
a(n) = (-1)^n*Sum_{k=0..n} binomial(n, k)(-1)^(n-k)*A002605(2k+2)/2.
a(n) = (-1)^n*(A090018(n) + A090018(n-1)). - R. J. Mathar, Apr 07 2022
MATHEMATICA
LinearRecurrence[{-6, 3}, {1, -7}, 31] (* G. C. Greubel, Oct 10 2022 *)
CoefficientList[Series[(1-x)/(1+6x-3x^2), {x, 0, 40}], x] (* Harvey P. Dale, Aug 31 2024 *)
PROG
(Magma) [n le 2 select (-7)^(n-1) else -6*Self(n-1) +3*Self(n-2): n in [1..31]]; // G. C. Greubel, Oct 10 2022
(SageMath)
A099842 = BinaryRecurrenceSequence(-6, 3, 1, -7)
[A099842(n) for n in range(31)] # G. C. Greubel, Oct 10 2022
CROSSREFS
Sequence in context: A230760 A198629 A190973 * A287811 A115194 A062274
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 27 2004
STATUS
approved