login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099840
Expansion of (1-6*x)/(1-20*x^2).
2
1, -6, 20, -120, 400, -2400, 8000, -48000, 160000, -960000, 3200000, -19200000, 64000000, -384000000, 1280000000, -7680000000, 25600000000, -153600000000, 512000000000, -3072000000000, 10240000000000, -61440000000000, 204800000000000, -1228800000000000
OFFSET
0,2
FORMULA
a(n) = (-2*sqrt(5))^n*(1/2 + 3*sqrt(5)/10) + (2*sqrt(5))^n*(1/2 - 3*sqrt(5)/10).
From G. C. Greubel, Apr 21 2023: (Start)
a(n) = (2*sqrt(5))^(n-1) * (-3*(1-(-1)^n) + sqrt(5)*(1+(-1)^n)).
E.g.f.: cosh(2*sqrt(5)*x) - (3/sqrt(5))*sinh(2*sqrt(5)*x). (End)
MATHEMATICA
LinearRecurrence[{0, 20}, {1, -6}, 41] (* G. C. Greubel, Apr 21 2023 *)
CoefficientList[Series[(1-6x)/(1-20x^2), {x, 0, 30}], x] (* Harvey P. Dale, Dec 02 2023 *)
PROG
(Magma) [n le 2 select 8-7*n else 20*Self(n-2): n in [1..41]]; // G. C. Greubel, Apr 21 2023
(SageMath)
def A099840(n): return 2*(2*sqrt(5))^(n-1)*(-3*(n%2) + sqrt(5)*((n+1)%2))
[A099840(n) for n in range(41)] # G. C. Greubel, Apr 21 2023
CROSSREFS
Fifth binomial transform of A099839.
Sequence in context: A045470 A117998 A267855 * A223045 A245855 A074012
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 27 2004
STATUS
approved