The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099837 Expansion of (1 - x^2) / (1 + x + x^2) in powers of x. 53
 1, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS A transform of (-1)^n. Row sums of Riordan array ((1-x)/(1+x), x/(1+x)^2), A110162. Let b(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)(-1)^(n-2k). Then a(n) = b(n) - b(n-2) = A049347(n) - A049347(n-2) (n > 0). The g.f. 1/(1+x) of (-1)^n is transformed to (1-x^2)/(1+x+x^2) under the mapping G(x)->((1-x^2)/(1+x^2))G(x/(1+x^2)). Partial sums of A099838. A(n) = a(n+3) (or a(n) if a(0) is replaced by 2) appears, together with B(n) = A049347(n) in the formula 2*exp(2*Pi*n*i/3) = A(n) + B(n)*sqrt(3)*i, n >= 0, with i = sqrt(-1). See A164116 for the case N=5. - Wolfdieter Lang, Feb 27 2014 LINKS Table of n, a(n) for n=0..71. Michael Somos, Rational Function Multiplicative Coefficients Index entries for linear recurrences with constant coefficients, signature (-1,-1). FORMULA G.f.: (1-x^2)/(1+x+x^2). Euler transform of length 3 sequence [-1, -1, 1]. - Michael Somos, Mar 21 2011 Moebius transform is length 3 sequence [-1, 0, 3]. - Michael Somos, Mar 22 2011 a(n) = -b(n) where b(n) = A061347(n) is multiplicative with b(3^e) = -2 if e > 0, b(p^e) = 1 otherwise. - Michael Somos, Jan 19 2012 a(n) = a(-n). a(n) = c_3(n) if n > 1 where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011 G.f.: (1 - x) * (1 - x^2) / (1 - x^3). a(n) = -a(n-1) - a(n-2) unless n = 0, 1, 2. - Michael Somos, Jan 19 2012 Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)*(3^(1-s)-1). - R. J. Mathar, Apr 11 2011 a(n+3) = R(n,-1) for n >= 0, with the monic Chebyshev T-polynomials R with coefficient table A127672. - Wolfdieter Lang, Feb 27 2014 For n > 0, a(n) = 2*cos(n*Pi/3)*cos(n*Pi). - Wesley Ivan Hurt, Sep 25 2017 From Peter Bala, Apr 20 2024: (Start) a(n) is equal to the n-th order Taylor polynomial (centered at 0) of 1/c(x)^(2*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108. Cf. A333093. Row sums of the Riordan array A110162. (End) EXAMPLE G.f. = 1 - x - x^2 + 2*x^3 - x^4 - x^5 + 2*x^6 - x^7 - x^8 + 2*x^9 - x^10 + ... MAPLE A099837 := proc(n) option remember; if n <=2 then op(n+1, [1, -1, -1]) ; else -procname(n-1)-procname(n-2) ; end if; end proc: seq(A099837(n), n=0..80) ; # R. J. Mathar, Apr 26 2022 MATHEMATICA a[0] = 1; a[n_] := Mod[n+2, 3] - Mod[n, 3]; A099837 = Table[a[n], {n, 0, 71}](* Jean-François Alcover, Feb 15 2012, after Michael Somos *) LinearRecurrence[{-1, -1}, {1, -1, -1}, 50] (* G. C. Greubel, Aug 08 2017 *) PROG (PARI) {a(n) = [2, -1, -1][n%3 + 1] - (n == 0)}; /* Michael Somos, Jan 19 2012 */ (Maxima) A099837(n) := block( if n = 0 then 1 else [2, -1, -1][1+mod(n, 3)] )\$ /* R. J. Mathar, Mar 19 2012 */ (PARI) Vec((1-x^2)/(1+x+x^2) + O(x^20)) \\ Felix Fröhlich, Aug 08 2017 CROSSREFS Cf. A061347, A100051, A100063, A098554, A110162. Sequence in context: A057559 A205375 A016010 * A100051 A281727 A122876 Adjacent sequences: A099834 A099835 A099836 * A099838 A099839 A099840 KEYWORD easy,sign AUTHOR Paul Barry, Oct 27 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 14:00 EDT 2024. Contains 375021 sequences. (Running on oeis4.)