This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100051 A Chebyshev transform of 1,1,1,... 13
 1, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS A Chebyshev transform of 1/(1-x): if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)). Transform of 1/(1+x) under the mapping g(x)->((1+x)/(1-x))g(x/(1-x)^2). - Paul Barry, Dec 01 2004 Multiplicative with a(p^e) = -1 if p = 2; -2 if p = 3; 1 otherwise. - David W. Wilson Jun 10 2005 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,-1). FORMULA From Paul Barry, Dec 01 2004: (Start) G.f.: (1-x^2)/(1-x+x^2). a(n) = a(n-1) - a(n-2), n>2. a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)/(n-k). a(n) = Sum_{k=0..n} binomial(n+k, 2k)*(2n/(n+k))*(-1)^k, n>1. (End) Moebius transform is length 6 sequence [1, -2, -3, 0, 0, 6]. Euler transform of length 6 sequence [1, -2, -1, 0, 0, 1]. a(n) = a(-n). a(n) = c_6(n) if n>1 where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011 a(n) = A087204(n), n>0. - R. J. Mathar, Sep 02 2008 a(n) = A057079(n+1), n>0. Dirichlet g.f. zeta(s) *(1-2^(1-s)-3^(1-s)+6^(1-s)). - R. J. Mathar, Apr 11 2011 EXAMPLE G.f. = 1 + x - x^2 - 2*x^3 - x^4 + x^5 + 2*x^6 + x^7 - x^8 - 2*x^9 - x^10 + ... MATHEMATICA CoefficientList[Series[(1 - x^2)/(1 - x + x^2), {x, 0, 50}], x] (* G. C. Greubel, May 03 2017 *) LinearRecurrence[{1, -1}, {1, 1, -1}, 80] (* Harvey P. Dale, Mar 25 2019 *) PROG (PARI) {a(n) = - (n == 0) + [2, 1, -1, -2, -1, 1][n%6 + 1]}; /* Michael Somos, Mar 21 2011 */ CROSSREFS Cf. A099837, A099443, A011655, A100047, A100048, A100050. Row sums of array A127677. Sequence in context: A205375 A016010 A099837 * A281727 A122876 A131713 Adjacent sequences:  A100048 A100049 A100050 * A100052 A100053 A100054 KEYWORD easy,sign,mult AUTHOR Paul Barry, Oct 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 21:07 EDT 2019. Contains 325226 sequences. (Running on oeis4.)