The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087204 Period 6: repeat [2, 1, -1, -2, -1, 1]. 14
2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Satisfies (a(n))^2 = a(2n) + 2. Shifted differences of itself.
Moebius transform is length 6 sequence [1, -2, -3, 0, 0, 6]. - Michael Somos, Oct 22 2006
Twice the real part of x^n, where x is either of the primitive 6th roots of unity. For the root with positive imaginary part, the imaginary part of x^n is i*A128834(n)*sqrt(3)/2. - Peter Munn, Apr 25 2022
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 176.
LINKS
Tanya Khovanova, Recursive Sequences.
Wikipedia, Lucas sequence.
FORMULA
a(n) = a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 1.
G.f.: (2-x)/(1-x+x^2).
a(n) = Sum_{k>=0} (-1)^k*n/(n-k)*C(n-k, k).
a(n) = (1/2)*((-1)^floor(n/3) + 2*(-1)^floor((n+1)/3) + (-1)^floor((n+2)/3)).
Multiplicative with a(2^e) = -1, a(3^e) = -2, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005
a(n) = a(-n) = -a(n-3) for all n in Z. - Michael Somos, Oct 22 2006
E.g.f.: 2*exp(x/2)*cos(sqrt(3)*x/2). - Sergei N. Gladkovskii, Aug 12 2012
a(n) = r^n + s^n, with r=(1+i*sqrt(3))/2 and s=(1-i*sqrt(3))/2 the roots of 1-x+x^2. - Ralf Stephan, Jul 19 2013
a(n) = 2*cos(n*Pi/3). - Wesley Ivan Hurt, Jun 19 2016
Dirichlet g.f.: zeta(s)*(1-2^(1-s)-3^(1-s)+6^(1-s)). - Amiram Eldar, Jan 01 2023
EXAMPLE
a(2) = -1 = a(1) - a(0) = 1 - 2 = ((1+sqrt(-3))/2)^2 + ((1-sqrt(-3))/2)^2 = -1 = -2/4 + 2*sqrt(-3)/4 - 2/4 -2 sqrt(-3)/4 = -1.
G.f. = 2 + x - x^2 - 2*x^3 - x^4 + x^5 + 2*x^6 + x^7 - x^8 - 2*x^9 - x^10 + ...
MAPLE
A087204:=n->[2, 1, -1, -2, -1, 1][(n mod 6)+1]: seq(A087204(n), n=0..100); # Wesley Ivan Hurt, Jun 19 2016
MATHEMATICA
PadLeft[{}, 108, {2, 1, -1, -2, -1, 1}] (* Harvey P. Dale, Sep 11 2011 *)
a[ n_] := {1, -1, -2, -1, 1, 2}[[Mod[n, 6, 1]]]; (* Michael Somos, Jan 29 2015 *)
a[ n_] := 2 Re[ Exp[ Pi I n / 3]]; (* Michael Somos, Mar 29 2015 *)
PROG
(PARI) {a(n) = [2, 1, -1, -2, -1, 1][n%6 + 1]}; /* Michael Somos, Oct 22 2006 */
(PARI) A087204(n) = if(0==n, 2, my(f = factor(n)); prod(k=1, #f~, if(f[k, 1]<=3, 1-f[k, 1], 1))); \\ (After David W. Wilson's multiplicative formula) - Antti Karttunen, Apr 28 2022
(Sage) [lucas_number2(n, 1, 1) for n in range(0, 102)] # Zerinvary Lajos, Apr 30 2009
(Magma) &cat[[2, 1, -1, -2, -1, 1]^^20]; // Wesley Ivan Hurt, Jun 19 2016
CROSSREFS
Essentially the same as A057079 and A100051. Pairwise sums of A010892.
Cf. A128834.
Sequence in context: A131556 A107751 A132367 * A101825 A177702 A131534
KEYWORD
sign,easy,mult
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003
EXTENSIONS
Edited by Ralf Stephan, Feb 04 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 15:57 EDT 2024. Contains 373463 sequences. (Running on oeis4.)