The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087204 Period 6: repeat [2, 1, -1, -2, -1, 1]. 14
 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Satisfies (a(n))^2 = a(2n) + 2. Shifted differences of itself. Moebius transform is length 6 sequence [1, -2, -3, 0, 0, 6]. - Michael Somos, Oct 22 2006 Twice the real part of x^n, where x is either of the primitive 6th roots of unity. For the root with positive imaginary part, the imaginary part of x^n is i*A128834(n)*sqrt(3)/2. - Peter Munn, Apr 25 2022 REFERENCES A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 176. LINKS Table of n, a(n) for n=0..101. Tanya Khovanova, Recursive Sequences. Wikipedia, Lucas sequence. Index entries for linear recurrences with constant coefficients, signature (1,-1). Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2). FORMULA a(n) = a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 1. G.f.: (2-x)/(1-x+x^2). a(n) = Sum_{k>=0} (-1)^k*n/(n-k)*C(n-k, k). a(n) = (1/2)*((-1)^floor(n/3) + 2*(-1)^floor((n+1)/3) + (-1)^floor((n+2)/3)). Multiplicative with a(2^e) = -1, a(3^e) = -2, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005 a(n) = a(-n) = -a(n-3) for all n in Z. - Michael Somos, Oct 22 2006 E.g.f.: 2*exp(x/2)*cos(sqrt(3)*x/2). - Sergei N. Gladkovskii, Aug 12 2012 a(n) = r^n + s^n, with r=(1+i*sqrt(3))/2 and s=(1-i*sqrt(3))/2 the roots of 1-x+x^2. - Ralf Stephan, Jul 19 2013 a(n) = 2*cos(n*Pi/3). - Wesley Ivan Hurt, Jun 19 2016 Dirichlet g.f.: zeta(s)*(1-2^(1-s)-3^(1-s)+6^(1-s)). - Amiram Eldar, Jan 01 2023 EXAMPLE a(2) = -1 = a(1) - a(0) = 1 - 2 = ((1+sqrt(-3))/2)^2 + ((1-sqrt(-3))/2)^2 = -1 = -2/4 + 2*sqrt(-3)/4 - 2/4 -2 sqrt(-3)/4 = -1. G.f. = 2 + x - x^2 - 2*x^3 - x^4 + x^5 + 2*x^6 + x^7 - x^8 - 2*x^9 - x^10 + ... MAPLE A087204:=n->[2, 1, -1, -2, -1, 1][(n mod 6)+1]: seq(A087204(n), n=0..100); # Wesley Ivan Hurt, Jun 19 2016 MATHEMATICA PadLeft[{}, 108, {2, 1, -1, -2, -1, 1}] (* Harvey P. Dale, Sep 11 2011 *) a[ n_] := {1, -1, -2, -1, 1, 2}[[Mod[n, 6, 1]]]; (* Michael Somos, Jan 29 2015 *) a[ n_] := 2 Re[ Exp[ Pi I n / 3]]; (* Michael Somos, Mar 29 2015 *) PROG (PARI) {a(n) = [2, 1, -1, -2, -1, 1][n%6 + 1]}; /* Michael Somos, Oct 22 2006 */ (PARI) A087204(n) = if(0==n, 2, my(f = factor(n)); prod(k=1, #f~, if(f[k, 1]<=3, 1-f[k, 1], 1))); \\ (After David W. Wilson's multiplicative formula) - Antti Karttunen, Apr 28 2022 (Sage) [lucas_number2(n, 1, 1) for n in range(0, 102)] # Zerinvary Lajos, Apr 30 2009 (Magma) &cat[[2, 1, -1, -2, -1, 1]^^20]; // Wesley Ivan Hurt, Jun 19 2016 CROSSREFS Essentially the same as A057079 and A100051. Pairwise sums of A010892. Cf. A128834. Sequence in context: A131556 A107751 A132367 * A101825 A177702 A131534 Adjacent sequences: A087201 A087202 A087203 * A087205 A087206 A087207 KEYWORD sign,easy,mult AUTHOR Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003 EXTENSIONS Edited by Ralf Stephan, Feb 04 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 15:57 EDT 2024. Contains 373463 sequences. (Running on oeis4.)