OFFSET
0,2
COMMENTS
Inverse binomial transform of A087204.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-2,4)
FORMULA
a(n) = (-1-sqrt(5))^n * (1/2-3*sqrt(5)/10) + (-1+sqrt(5))^n * (1/2+3*sqrt(5)/10).
G.f.: (4*x +1)/(-4*x^2 +2*x +1). - Joerg Arndt, Jul 14 2013
a(n) = -(-2)^n*F(n-2) for n >= 0, with F = A000045, and F(-1) = 1, F(-2) = -1. - Wolfdieter Lang, Oct 08 2018
MATHEMATICA
Table[-(-2)^n*Fibonacci[n - 2], {n, 0, 50}] (* G. C. Greubel, Oct 08 2018 *)
LinearRecurrence[{-2, 4}, {1, 2}, 30] (* Harvey P. Dale, Jan 24 2022 *)
PROG
(PARI) Vec((4*x+1)/(-4*x^2+2*x+1)+O(x^66)) \\ Joerg Arndt, Jul 14 2013
(PARI) vector(50, n, n--; (-1)^(n+1)*2^n*fibonacci(n-2)) \\ G. C. Greubel, Oct 08 2018
(Magma) [(-1)^(n+1)*2^n*Fibonacci(n-2): n in [0..50]]; // G. C. Greubel, Oct 08 2018
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Aug 25 2003
STATUS
approved