login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281727
a(n) = (-1)^n * 2 if n = 3*k and n!=0, otherwise a(n) = (-1)^n.
0
1, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1
OFFSET
0,4
FORMULA
Euler transform of length 6 sequence [-1, 1, -1, -1, 0, 1].
a(n) = -b(n) where b() is multiplicative with b(2^e) = -1 if e>0, b(3^e) = 2 if e>0, b(p^e) = 1 otherwise.
G.f.: 1 - x / (1 + x) - x^3 / (1 + x^3).
G.f.: (1 - x + x^2 - x^3) / (1 + x^3).
G.f.: (1 - x) * (1 - x^3) * (1 - x^4) / ((1 - x^2) * (1 - x^6)).
a(n) = a(-n) for all n in Z.
a(3*n) = A280560(n) for all n in Z.
EXAMPLE
G.f. = 1 - x + x^2 - 2*x^3 + x^4 - x^5 + 2*x^6 - x^7 + x^8 - 2*x^9 + ...
MATHEMATICA
a[ n_] := {2, -1, 1, -2, 1, -1}[[Mod[n, 6] + 1]] - Boole[n == 0];
a[ n_] := (-1)^n If[ n != 0 && Divisible[n, 3], 2, 1];
a[ n_] := SeriesCoefficient[ (1 - x + x^2 - x^3) / (1 + x^3), {x, 0, Abs[n]}];
PROG
(PARI) {a(n) = (-1)^n * if(n && n%3==0, 2, 1)};
(PARI) {a(n) = [2, -1, 1, -2, 1, -1][n%6 + 1] - (n==0)};
(PARI) {a(n) = n=abs(n); polcoeff( (1 - x + x^2 - x^3) / (1 + x^3) + x * O(x^n), n)};
CROSSREFS
Cf. A280560.
Sequence in context: A016010 A099837 A100051 * A122876 A131713 A100063
KEYWORD
sign
AUTHOR
Michael Somos, Jan 28 2017
STATUS
approved