login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (-1)^n * 2 if n = 3*k and n!=0, otherwise a(n) = (-1)^n.
0

%I #11 Mar 21 2017 11:17:07

%S 1,-1,1,-2,1,-1,2,-1,1,-2,1,-1,2,-1,1,-2,1,-1,2,-1,1,-2,1,-1,2,-1,1,

%T -2,1,-1,2,-1,1,-2,1,-1,2,-1,1,-2,1,-1,2,-1,1,-2,1,-1,2,-1,1,-2,1,-1,

%U 2,-1,1,-2,1,-1,2,-1,1,-2,1,-1,2,-1,1,-2,1,-1,2,-1,1

%N a(n) = (-1)^n * 2 if n = 3*k and n!=0, otherwise a(n) = (-1)^n.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,-1).

%F Euler transform of length 6 sequence [-1, 1, -1, -1, 0, 1].

%F a(n) = -b(n) where b() is multiplicative with b(2^e) = -1 if e>0, b(3^e) = 2 if e>0, b(p^e) = 1 otherwise.

%F G.f.: 1 - x / (1 + x) - x^3 / (1 + x^3).

%F G.f.: (1 - x + x^2 - x^3) / (1 + x^3).

%F G.f.: (1 - x) * (1 - x^3) * (1 - x^4) / ((1 - x^2) * (1 - x^6)).

%F a(n) = a(-n) for all n in Z.

%F a(3*n) = A280560(n) for all n in Z.

%e G.f. = 1 - x + x^2 - 2*x^3 + x^4 - x^5 + 2*x^6 - x^7 + x^8 - 2*x^9 + ...

%t a[ n_] := {2, -1, 1, -2, 1, -1}[[Mod[n, 6] + 1]] - Boole[n == 0];

%t a[ n_] := (-1)^n If[ n != 0 && Divisible[n, 3], 2, 1];

%t a[ n_] := SeriesCoefficient[ (1 - x + x^2 - x^3) / (1 + x^3), {x, 0, Abs[n]}];

%o (PARI) {a(n) = (-1)^n * if(n && n%3==0, 2, 1)};

%o (PARI) {a(n) = [2, -1, 1, -2, 1, -1][n%6 + 1] - (n==0)};

%o (PARI) {a(n) = n=abs(n); polcoeff( (1 - x + x^2 - x^3) / (1 + x^3) + x * O(x^n), n)};

%Y Cf. A280560.

%K sign

%O 0,4

%A _Michael Somos_, Jan 28 2017