The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110162 Riordan array ((1-x)/(1+x), x/(1+x)^2). 14
 1, -2, 1, 2, -4, 1, -2, 9, -6, 1, 2, -16, 20, -8, 1, -2, 25, -50, 35, -10, 1, 2, -36, 105, -112, 54, -12, 1, -2, 49, -196, 294, -210, 77, -14, 1, 2, -64, 336, -672, 660, -352, 104, -16, 1, -2, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 2, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Inverse of Riordan array A094527. Rows sums are A099837. Diagonal sums are A110164. Product of Riordan array A102587 and inverse binomial transform (1/(1+x), x/(1+x)). Coefficients of polynomials related to Cartan matrices of types C_n and B_n: p(x, n) = (-2 + x)*p(x, n - 1) - p(x, n - 2), with p(x,0) = 1; p(x,1) = 2-x; p(x,2) = x^2-4*x-2. - Roger L. Bagula, Apr 12 2008 From Wolfdieter Lang, Nov 16 2012: (Start) The alternating row sums are given in A219233. For n >= 1 the row polynomials in the variable x^2 are R(2*n,x):=2*T(2*n,x/2) with Chebyshev's T-polynomials. See A127672 and also the triangle A127677. (End) From Peter Bala, Jun 29 2015: (Start) Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x)^2 and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan). T(n,k) = [x^(n-k)] f(x)^n with f(x) = (1 - 2*x + sqrt(1 - 4*x))/2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End) LINKS G. C. Greubel, Rows n=0..100 of triangle, flattened Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020. P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263. T. M. Richardson, The Reciprocal Pascal Matrix, arXiv:1405.6315 [math.CO], 2014. FORMULA T(n,k) = (-1)^(n-k)*(C(n+k,n-k) + C(n+k-1,n-k-1)), with T(0,0) = 1. - Paul Barry, Mar 22 2007 From Wolfdieter Lang, Nov 16 2012: (Start) O.g.f. row polynomials P(n,x) := Sum(T(n,k)*x^k, k=0..n): (1-z^2)/(1+(x-2)*z+z^2) (from the Riordan property). O.g.f. column No. k: ((1-x)/(1+x))*(x/(1+x)^2)^k, k >= 0. T(0,0) = 1, T(n,k) = (-1)^(n-k)*(2*n/(n+k))*binomial(n+k,n-k), n>=1, and T(n,k) = 0 if n < k. (From the Chebyshev T-polynomial formula due to Waring's formula.) (End) T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 29 2013 EXAMPLE Triangle T(n,k) begins: m\k  0    1    2     3     4     5     6    7    8   9 10 ... 0:   1 1:  -2    1 2:   2   -4    1 3:  -2    9   -6     1 4:   2  -16   20    -8     1 5:  -2   25  -50    35   -10     1 6:   2  -36  105  -112    54   -12     1 7:  -2   49 -196   294  -210    77   -14    1 8:   2  -64  336  -672   660  -352   104  -16    1 9:  -2   81 -540  1386 -1782  1287  -546  135  -18   1 10:  2 -100  825 -2640  4290 -4004  2275 -800  170 -20  1 ... Reformatted and extended by Wolfdieter Lang, Nov 16 2012 Row polynomial n=2: P(2,x) = 2 - 4*x + x^2. R(4,x):= 2*T(4,x/2) = 2 - 4*x^2 + x^4. For P and R see a comment above. - Wolfdieter Lang, Nov 16 2012. MATHEMATICA Table[If[n==0 && k==0, 1, (-1)^(n-k)*(Binomial[n+k, n-k] + Binomial[n+k-1, n-k-1])], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 16 2018 *) PROG (MAGMA) /* As triangle */ [[(-1)^(n-k)*(Binomial(n+k, n-k) + Binomial(n+k-1, n-k-1)): k in [0..n]]: n in [0.. 12]]; // Vincenzo Librandi, Jun 30 2015 (PARI) {T(n, k) = (-1)^(n-k)*(binomial(n+k, n-k) + binomial(n+k-1, n-k-1))}; for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 16 2018 (Sage) [[(-1)^(n-k)*(binomial(n+k, n-k) + binomial(n+k-1, n-k-1)) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 16 2018 CROSSREFS Cf. A128411. See A127677 for an almost identical triangle. Cf. A136674, A053122. Sequence in context: A333571 A125694 A136678 * A199087 A306913 A087704 Adjacent sequences:  A110159 A110160 A110161 * A110163 A110164 A110165 KEYWORD easy,sign,tabl AUTHOR Paul Barry, Jul 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 11:24 EDT 2020. Contains 337393 sequences. (Running on oeis4.)