login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110165
Riordan array (1/sqrt(1-6x+5x^2),(1-3x-sqrt(1-6x+5x^2))/(2x)).
6
1, 3, 1, 11, 6, 1, 45, 30, 9, 1, 195, 144, 58, 12, 1, 873, 685, 330, 95, 15, 1, 3989, 3258, 1770, 630, 141, 18, 1, 18483, 15533, 9198, 3801, 1071, 196, 21, 1, 86515, 74280, 46928, 21672, 7210, 1680, 260, 24, 1, 408105, 356283, 236736, 119154, 44982, 12510, 2484, 333, 27, 1
OFFSET
0,2
COMMENTS
Columns include A026375, A026376 and A026377. Inverse is A110168. Rows sums are A110166. Diagonal sums are A110167.
From Peter Bala, Jan 09 2022: (Start)
This Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = (1 - 3*x - sqrt(1 - 6*x + 5*x^2))/(2*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = 1 + 3*x + x^2. In general the (n,k)-th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
LINKS
P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
FORMULA
Number triangle T(n, k) = Sum_{j = 0..n} C(n, j)C(2j, j+k).
T(n,0) = 3*T(n-1,0) + 2*T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k > 0, T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 24 2014
EXAMPLE
Rows begin
1;
3, 1;
11, 6, 1;
45, 30, 9, 1;
195, 144, 58, 12, 1;
873, 685, 330, 95, 15, 1;
Production array begins:
3, 1;
2, 3, 1;
0, 1, 3, 1;
0, 0, 1, 3, 1;
0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 1, 3, 1;
... - Philippe Deléham, Feb 08 2014
MAPLE
seq(seq( coeff((x^2 + 3*x + 1)^n, x, n-k), k = 0..n ), n = 0..10); # Peter Bala, Jan 09 2022
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1/Sqrt[1-6#+5#^2]&, (1-3#-Sqrt[1-6#+5#^2])/(2#)&, 10] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
CROSSREFS
Sequence in context: A092808 A343171 A113955 * A111965 A110440 A135574
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 14 2005
STATUS
approved