login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026377
a(n) = number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=4; also a(n) = T(2n,n-2).
3
1, 9, 58, 330, 1770, 9198, 46928, 236736, 1185645, 5909805, 29362806, 145570230, 720606705, 3563543025, 17610412600, 86989143480, 429579843435, 2121099312195, 10472653252550, 51708363376950, 255326054688320
OFFSET
2,2
COMMENTS
Number of lattice paths from (0,0) to (2n,4), using steps U=(1,1), D=(1,-1) and at even levels(zero, positive and negative) also H=(2,0). Example: a(3)=9 because we have UUUUUD, UUUUDU, UUUDUU, UUDUUU, UDUUUU, DUUUUU, HUUUU, UUHUU and UUUUH. - Emeric Deutsch, Jan 30 2004
LINKS
FORMULA
From Emeric Deutsch, Jan 30 2004: (Start)
a(n) = [t^(n+2)](1+3t+t^2)^n.
a(n) = Sum_{j=ceiling((n+2)/2)..n} (3^(2j-n-2)*binomial(n, j)*binomial(j, n+2-j)). (End)
From Paul Barry, Sep 20 2004: (Start)
E.g.f.: exp(3x) * BesselI(2, 2x);
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2k, k+2). (End)
Conjecture: n*(n+4)*a(n) - 3*(n+2)*(2*n+3)*a(n-1) + 5*(n+2)*(n+1)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012
G.f.: (3*x - 1 + (1-6*x+7*x^2)/sqrt(5*x^2-6*x+1))/(2*x^2). - Mark van Hoeij, Apr 18 2013
a(n) ~ 5^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 07 2013
Assuming offset 0: a(n) = C(2*n+4,n)*hypergeom([-n,-n-4],[-3/2-n],-1/4). - Peter Luschny, May 09 2016
MAPLE
series( (3*x-1+(1-6*x+7*x^2)/sqrt(5*x^2-6*x+1))/(2*x^2), x=0, 30); # Mark van Hoeij, Apr 18 2013
MATHEMATICA
CoefficientList[Series[(3*x-1+(1-6*x+7*x^2)/Sqrt[5*x^2-6*x+1])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 07 2013 *)
PROG
(PARI) x='x+O('x^66); Vec((3*x-1+(1-6*x+7*x^2)/sqrt(5*x^2-6*x+1))/(2*x^2)) /* Joerg Arndt, Apr 19 2013 */
CROSSREFS
Cf. A026374.
Sequence in context: A018218 A026750 A009034 * A016209 A196920 A129173
KEYWORD
nonn
STATUS
approved