login
A026379
a(n) = number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=3; also a(n) = T(2n-1,n-2).
2
1, 7, 39, 202, 1015, 5028, 24731, 121208, 593019, 2899335, 14173401, 69301422, 338990145, 1659037695, 8124085575, 39806373880, 195160896835, 957396540285, 4699409632805, 23080158080150, 113414575414245, 557601196738190
OFFSET
2,2
LINKS
FORMULA
a(n) = [t^(n+1)]{(1+t)(1+3t+t^2)^(n-1)}. - Emeric Deutsch, Jan 30 2004
G.f.: -1/x+2-2*x^2/(10*x^2+sqrt(1-5*x)*sqrt(1-x)*(4*x-1)-7*x+1). - Vladimir Kruchinin, Aug 11 2015
MAPLE
sum(binomial(n, k)*binomial(2*k+1, k-1), k=0..n); n=0, 1, ... # N. J. A. Sloane
MATHEMATICA
a[n_] := (n-1)*Hypergeometric2F1[5/2, 2-n, 4, -4]; Table[a[n], {n, 2, 23}](* Jean-François Alcover, Jun 12 2012, after N. J. A. Sloane *)
Table[Sum[Binomial[n, k]Binomial[2k+1, k-1], {k, 0, n}], {n, 30}] (* Harvey P. Dale, Apr 28 2013 *)
CROSSREFS
Partial sums of A034942.
Sequence in context: A034267 A198767 A026752 * A026708 A016127 A099460
KEYWORD
nonn,nice,easy
STATUS
approved