login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=4; also a(n) = T(2n,n-2).
3

%I #33 Jun 10 2019 00:52:55

%S 1,9,58,330,1770,9198,46928,236736,1185645,5909805,29362806,145570230,

%T 720606705,3563543025,17610412600,86989143480,429579843435,

%U 2121099312195,10472653252550,51708363376950,255326054688320

%N a(n) = number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=4; also a(n) = T(2n,n-2).

%C Number of lattice paths from (0,0) to (2n,4), using steps U=(1,1), D=(1,-1) and at even levels(zero, positive and negative) also H=(2,0). Example: a(3)=9 because we have UUUUUD, UUUUDU, UUUDUU, UUDUUU, UDUUUU, DUUUUU, HUUUU, UUHUU and UUUUH. - _Emeric Deutsch_, Jan 30 2004

%H G. C. Greubel, <a href="/A026377/b026377.txt">Table of n, a(n) for n = 2..1000</a>

%F From _Emeric Deutsch_, Jan 30 2004: (Start)

%F a(n) = [t^(n+2)](1+3t+t^2)^n.

%F a(n) = Sum_{j=ceiling((n+2)/2)..n} (3^(2j-n-2)*binomial(n, j)*binomial(j, n+2-j)). (End)

%F From _Paul Barry_, Sep 20 2004: (Start)

%F E.g.f.: exp(3x) * BesselI(2, 2x);

%F a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2k, k+2). (End)

%F Conjecture: n*(n+4)*a(n) - 3*(n+2)*(2*n+3)*a(n-1) + 5*(n+2)*(n+1)*a(n-2) = 0. - _R. J. Mathar_, Nov 24 2012

%F G.f.: (3*x - 1 + (1-6*x+7*x^2)/sqrt(5*x^2-6*x+1))/(2*x^2). - _Mark van Hoeij_, Apr 18 2013

%F a(n) ~ 5^(n+1/2)/(2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 07 2013

%F Assuming offset 0: a(n) = C(2*n+4,n)*hypergeom([-n,-n-4],[-3/2-n],-1/4). - _Peter Luschny_, May 09 2016

%p series( (3*x-1+(1-6*x+7*x^2)/sqrt(5*x^2-6*x+1))/(2*x^2), x=0, 30); # _Mark van Hoeij_, Apr 18 2013

%t CoefficientList[Series[(3*x-1+(1-6*x+7*x^2)/Sqrt[5*x^2-6*x+1])/(2*x^2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 07 2013 *)

%o (PARI) x='x+O('x^66); Vec((3*x-1+(1-6*x+7*x^2)/sqrt(5*x^2-6*x+1))/(2*x^2)) /* _Joerg Arndt_, Apr 19 2013 */

%Y Cf. A026374.

%K nonn

%O 2,2

%A _Clark Kimberling_