login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009034
Expansion of e.g.f. cos(log(1+x)/exp(x)).
1
1, 0, -1, 9, -58, 330, -1690, 6580, 5924, -626856, 11483620, -169739812, 2336104168, -31232156280, 411116838184, -5322020904720, 66716820030608, -776290733888320, 7344102656963504, -19147581666874928
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=1..n/2} (-1)^(k)*Sum_{i=2*k..n} binomial(n,i)*(Stirling1(i,2*k)*(2*k)^(n-i)*(-1)^(n-i)), n > 0, a(0)=1. - Vladimir Kruchinin, Jun 29 2011
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Cos[Log[1+x]/Exp[x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 14 2014 *)
PROG
(Maxima)
a(n):=if n=0 then 1 else (sum((-1)^(k)*sum(binomial(n, i)*(stirling1(i, 2*k)*(2*k)^(n-i)*(-1)^(n-i)), i, 2*k, n), k, 1, n/2)); /* Vladimir Kruchinin, Jun 29 2011 */
(PARI) x='x+O('x^30); Vec(serlaplace(cos(log(1+x)/exp(x)))) \\ G. C. Greubel, Jul 22 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cos(Log(1+x)/Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 22 2018
CROSSREFS
Sequence in context: A099624 A018218 A026750 * A026377 A016209 A196920
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved