login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099624
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k+2)*3^(n-k-2)*(4/3)^k.
1
0, 0, 1, 9, 58, 318, 1591, 7503, 33976, 149436, 643261, 2724357, 11395654, 47210154, 194121811, 793526571, 3228811492, 13090123272, 52917410041, 213437246145, 859342367890, 3455021317590, 13875655896751, 55677180731079
OFFSET
0,4
COMMENTS
In general a(n) = Sum_{k=0..floor(n/2)} C(n-k,k+2)*u^(n-k-2)*(v/u)^k has g.f. x^2/((1-u*x)^2(1-u*x-v*x^2)) and satisfies the recurrence a(n) = 3u*a(n-1)-(3u^2-v)*a(n-2)+(u^3-2uv)*a(n-3)+u^2^v*a(n-4).
FORMULA
G.f.: x^2/((1-3*x)^2*(1-3*x-4*x^2)).
a(n) = 9*a(n-1)-23*a(n-2)+3*a(n-3)+36*a(n-4).
a(n) = -(n/4+13/16)*3^n +(-1)^n/80 +4^(n+1)/5 . - R. J. Mathar, Dec 16 2024
CROSSREFS
Cf. A099623.
Sequence in context: A044528 A027174 A304370 * A018218 A026750 A009034
KEYWORD
easy,nonn,changed
AUTHOR
Paul Barry, Oct 25 2004
STATUS
approved