login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099623
Sum C(n-k,k+2)2^(n-k-2)(3/2)^k, k=0..floor(n/2).
2
0, 0, 1, 6, 27, 104, 369, 1242, 4039, 12828, 40077, 123758, 379011, 1153872, 3498025, 10572354, 31884543, 96010436, 288788613, 867967830, 2607282235, 7828953720, 23501774241, 70536546986, 211674885687, 635160738924, 1905765565309
OFFSET
0,4
COMMENTS
In general a(n)=sum{k=0..floor(n/2), C(n-k,k+2)u^(n-k-2)(v/u)^k has g.f. x^2/((1-u*x)^2(1-u*x-v*x^2)) and satisfies the recurrence a(n)=3u*a(n-1)-(3u^2-v)a(n-2)+(u^3-2uv)a(n-3)+u^2^v*a(n-4).
FORMULA
G.f.: x^2/((1-2x)^2(1-2x-3x^2)); a(n)=6a(n-1)-9a(n-2)-4a(n-3)+12a(n-4).
a(n) = -(n/3+7/9)*2^n +(-1)^n/36 +3^(n+1)/4 . - R. J. Mathar, Dec 16 2024
MATHEMATICA
LinearRecurrence[{6, -9, -4, 12}, {0, 0, 1, 6}, 30] (* Harvey P. Dale, Mar 27 2016 *)
CROSSREFS
Sequence in context: A054457 A000395 A005325 * A119852 A220529 A027471
KEYWORD
easy,nonn,changed
AUTHOR
Paul Barry, Oct 25 2004
STATUS
approved