OFFSET
0,4
COMMENTS
In general a(n)=sum{k=0..floor(n/2), C(n-k,k+2)u^(n-k-2)(v/u)^k has g.f. x^2/((1-u*x)^2(1-u*x-v*x^2)) and satisfies the recurrence a(n)=3u*a(n-1)-(3u^2-v)a(n-2)+(u^3-2uv)a(n-3)+u^2^v*a(n-4).
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-9,-4,12).
FORMULA
G.f.: x^2/((1-2x)^2(1-2x-3x^2)); a(n)=6a(n-1)-9a(n-2)-4a(n-3)+12a(n-4).
a(n) = -(n/3+7/9)*2^n +(-1)^n/36 +3^(n+1)/4 . - R. J. Mathar, Dec 16 2024
MATHEMATICA
LinearRecurrence[{6, -9, -4, 12}, {0, 0, 1, 6}, 30] (* Harvey P. Dale, Mar 27 2016 *)
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Paul Barry, Oct 25 2004
STATUS
approved