login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000395
6th power of rooted tree enumerator; number of linear forests of 6 rooted trees.
(Formerly M4175 N1739)
6
1, 6, 27, 104, 369, 1236, 3989, 12522, 38535, 116808, 350064, 1039896, 3068145, 9004182, 26314773, 76652582, 222705603, 645731148, 1869303857, 5404655358, 15611296146, 45060069406, 129989169909, 374843799786, 1080624405287
OFFSET
6,2
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: B(x)^6 where B(x) is g.f. of A000081.
a(n) ~ 6 * A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Jan 03 2021
MAPLE
b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n, k) option remember; add(b(n+1-j*k), j=1..iquo(n, k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-5)^6, x=0, n+1), x, n): seq(a(n), n=6..30); # Alois P. Heinz, Aug 21 2008
MATHEMATICA
b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-5]^6, {x, 0, n}]; Table[a[n], {n, 6, 30}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)
CROSSREFS
Column 6 of A339067.
Sequence in context: A124641 A169793 A054457 * A005325 A099623 A119852
KEYWORD
nonn
EXTENSIONS
More terms from Christian G. Bower, Nov 15 1999
STATUS
approved