login
A119852
Number of ternary words with exactly one 012.
1
0, 0, 0, 1, 6, 27, 106, 387, 1350, 4566, 15102, 49113, 157622, 500520, 1575558, 4923536, 15290784, 47235771, 145246224, 444814533, 1357368786, 4128880561, 12523521786, 37888119522, 114358226428, 344437708131, 1035409733820
OFFSET
0,5
COMMENTS
Except for the initial three zeros, convolution of A076264 with itself. Column 1 of A119851.
FORMULA
G.f.=z^3/(1-3z+z^2)^2.
a(0)=0, a(1)=0, a(2)=0, a(3)=1, a(4)=6, a(5)=27, a(n)=6*a(n-1)- 9*a(n-2)- 2*a(n-3)+6*a(n-4)-a(n-6). - Harvey P. Dale, Apr 28 2014
EXAMPLE
a(4)=6 because we have 0012, 0120, 0121, 0122, 1012 and 2012.
MAPLE
G:=z^3/(1-3*z+z^3)^2: Gser:=series(G, z=0, 34): seq(coeff(Gser, z, n), n=0..30);
MATHEMATICA
CoefficientList[Series[z^3/(1-3z+z^3)^2, {z, 0, 30}], z] (* or *) LinearRecurrence[ {6, -9, -2, 6, 0, -1}, {0, 0, 0, 1, 6, 27}, 30] (* Harvey P. Dale, Apr 28 2014 *)
CROSSREFS
Sequence in context: A000395 A005325 A099623 * A220529 A027471 A305780
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 26 2006
STATUS
approved