login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119851
Triangle read by rows: T(n,k) is the number of ternary words of length n containing k 012's (n >= 0, 0 <= k <= floor(n/3)).
1
1, 3, 9, 26, 1, 75, 6, 216, 27, 622, 106, 1, 1791, 387, 9, 5157, 1350, 54, 14849, 4566, 267, 1, 42756, 15102, 1179, 12, 123111, 49113, 4833, 90, 354484, 157622, 18798, 536, 1, 1020696, 500520, 70317, 2775, 15, 2938977, 1575558, 255231, 13068, 135
OFFSET
0,2
COMMENTS
Row n has 1+floor(n/3) terms.
Sum of entries in row n is 3^n (A000244).
Sum_{k>=0} k*T(n,k) = (n-2)*3^(n-3) = A027741(n-1).
FORMULA
T(n,k) = Sum_{j=0..n-3k} binomial(-(k-1),j) * binomial(j,(n-3k-j)/2) * (-3)^((3j+3k-n)/2). - Max Alekseyev
G.f.: G(t,z) = 1/(1-3z+z^3-tz^3).
Recurrence relation: T(n,k) = 3*T(n-1,k) - T(n-3,k) + T(n-3,k-1) for n >= 3.
EXAMPLE
T(4,1)=6 because we have 0012, 0120, 0121, 0122, 1012 and 2012.
Triangle starts:
1;
3;
9;
26, 1;
75, 6;
216, 27;
622, 106, 1;
MAPLE
G:=1/(1-3*z+z^3-t*z^3): Gser:=simplify(series(G, z=0, 20)): P[0]:=1: for n from 1 to 15 do P[n]:=sort(coeff(Gser, z^n)) od: for n from 0 to 15 do seq(coeff(P[n], t, j), j=0..floor(n/3)) od; # yields sequence in triangular form
PROG
(PARI) { T(n, k) = sum(j=0, n-3*k, if((n-3*k-j)%2, 0, binomial(-(k-1), j) *
binomial(j, (n-3*k-j)/2) * (-3)^((3*j+3*k-n)/2) )) } \\ Max Alekseyev
CROSSREFS
Cf. A000244, A076264 (=T(n,0)), A119852 (=T(n,1)), A027741.
Sequence in context: A074440 A006204 A013572 * A119825 A235538 A370642
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 26 2006
STATUS
approved