OFFSET
0,2
COMMENTS
A transform of A000244 under the mapping g(x)->(1/(1+x^3))g(x/(1+x^3)). - Paul Barry, Oct 20 2004
b(n) := (-1)^n*a(n) appears in the formula for the nonpositive powers of rho(9) := 2*cos(Pi/9), when written in the power basis of the algebraic number field Q(rho(9)) of degree 3. See A187360 for the minimal polynomial C(9, x) of rho(9), and a link to the Q(2*cos(pi/n)) paper. 1/rho(9) = -3*1 + 0*rho(9) + 1*rho(9)^2 (see A230079, row n=5). 1/rho(9)^n = b(n)*1 + b(n-2)*rho(9) + b(n-1)*rho(9)^2, n >= 0, with b(-1) = 0 = b(-2). - Wolfdieter Lang, Nov 04 2013
The limit b(n+1)/b(n) = -a(n+1)/a(n) for n -> infinity is -tau(9) := -(1 + rho(9)) = 1/(2*cos(Pi*5/9)), approximately -2.445622407. tau(9) is known to be the length ratio (longest diagonal)/side in the regular 9-gon. This limit follows from the b(n)-recurrence and the solutions of X^3 + 3*X^2 - 1 = 0, which are given by the inverse of the known solutions of the minimal polynomial C(9, x) of rho(9) (see A187360). The other two X solutions are 1/rho(9) = -3 + rho(9)^2, approximately 0.5320888860 and 1/(2*cos(Pi*7/9)) = 1 + rho(9) - rho(9)^2, approximately -0.6527036445, and they are therefore irrelevant for this sequence. - Wolfdieter Lang, Nov 08 2013
a(n) is also the number of ternary (0,1,2) sequences of length n without a consecutive '110' because the patterns A=012 and B=110 have the same autocorrelation, i.e., AA=100=BB, in the sense of Guibas and Odlysko (1981). (A cyclic version of this sequence can be found in sequence A274018.) - Petros Hadjicostas, Sep 12 2017
REFERENCES
A. Tucker, Applied Combinatorics, 4th ed. p. 277
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
L. J. Guibas and A. M. Odlyzko, String overlaps, pattern matching, and nontransitive games, J. Combin. Theory Ser. A 30 (1981), 183-208. [Comment: The authors use generating functions in terms of z^{-1}. To get the g.f. of the sequence, as shown below in the FORMULA section, let x=z^{-1} and perform simple algebra. There are some minor typos in Theorem 2.1, p. 191, that can be easily corrected by looking at the proof. - Petros Hadjicostas, Sep 12 2017]
Yun-Tak Oh, Hosho Katsura, Hyun-Yong Lee, Jung Hoon Han, Proposal of a spin-one chain model with competing dimer and trimer interactions, arXiv:1709.01344 [cond-mat.str-el], 2017.
Index entries for linear recurrences with constant coefficients, signature (3,0,-1).
FORMULA
a(n) is asymptotic to g*c^n where c = cos(Pi/18)/cos(7*Pi/18) and g is the largest real root of 81*x^3 - 81*x^2 - 9*x + 1 = 0. - Benoit Cloitre, Nov 06 2002
G.f.: 1/(1 - 3x + x^3).
a(n) = 3*a(n-1) - a(n-3), n > 0.
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2k, k)(-1)^k*3^(n-3k). - Paul Barry, Oct 20 2004
a(n) = middle term in M^(n+1) * [1 0 0], where M = the 3 X 3 matrix [2 1 1 / 1 1 0 / 1 0 0]. Right term = A052536(n), left term = A052536(n+1). - Gary W. Adamson, Sep 05 2005
EXAMPLE
1/rho(9)^3 = -26*1 - 3*rho(9) + 9*rho(9)^2, (approximately 0.15064426) with rho(9) given in the Nov 04 2013 comment above. - Wolfdieter Lang, Nov 04 2013
G.f. = 1 + 3*x + 9*x^2 + 26*x^3 + 75*x^4 + 216*x^5 + 622*x^6 + 1791*x^7 + ...
MATHEMATICA
LinearRecurrence[{3, 0, -1}, {1, 3, 9}, 30] (* Harvey P. Dale, Feb 28 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / (1 - 3*x + x^3) + x * O(x^n), n))};
(GAP) List([0..25], n->Sum([0..Int(n/3)], k->*Binomial(n-2*k, k)*(-1)^k*3^(n-3*k))); # Muniru A Asiru, Feb 20 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John L. Drost, Nov 05 2002
STATUS
approved