The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123941 The (1,2)-entry in the 3 X 3 matrix M^n, where M = {{2, 1, 1}, {1, 1, 0}, {1, 0, 0}}. 1
 0, 1, 3, 9, 26, 75, 216, 622, 1791, 5157, 14849, 42756, 123111, 354484, 1020696, 2938977, 8462447, 24366645, 70160958, 202020427, 581694636, 1674922950, 4822748423, 13886550633, 39984728949, 115131438424, 331507764639, 954538564968, 2748484256480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Essentially the same as A076264. - Tom Edgar, May 12 2015 REFERENCES Rosenblum and Rovnyak, Hardy Classes and Operator Theory, Dover, New York, 1985, page 26 LINKS Muniru A Asiru, Table of n, a(n) for n = 0..2000 Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019). Index entries for linear recurrences with constant coefficients, signature (3,0,-1). FORMULA a(n) = 3*a(n-1) - a(n-3), a(0)=0, a(1)=1, a(2)=3 (follows from the minimal polynomial x^3-3x^2+1 of the matrix M). a(n) = A076264(n-1). - R. J. Mathar, Jun 18 2008 G.f.: x/(1 - 3*x + x^3). - Arkadiusz Wesolowski, Oct 29 2012 a(n) = A018919(n-2) for n >= 2. - Georg Fischer, Oct 28 2018 MAPLE with(linalg): M[1]:=matrix(3, 3, [2, 1, 1, 1, 1, 0, 1, 0, 0]): for n from 2 to 30 do M[n]:=multiply(M[1], M[n-1]) od: 0, seq(M[n][1, 2], n=1..30); a[0]:=0: a[1]:=1: a[2]:=3: for n from 3 to 30 do a[n]:=3*a[n-1]-a[n-3] od: seq(a[n], n=0..30); MATHEMATICA M = {{2, 1, 1}, {1, 1, 0}, {1, 0, 0}}; v[1] = {0, 0, 1}; v[n_]:= v[n] =M.v[n-1]; Table[v[n][[2]], {n, 30}] LinearRecurrence[{3, 0, -1}, {0, 1, 3}, 30] (* G. C. Greubel, Aug 05 2019 *) PROG (GAP) a:=[0, 1, 3];; for n in [4..30] do a[n]:=3*a[n-1]-a[n-3]; od; a; # Muniru A Asiru, Oct 28 2018 (PARI) my(x='x+O('x^30)); concat([0], Vec(x/(1-3*x+x^3))) \\ G. C. Greubel, Aug 05 2019 (Magma) R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x/(1-3*x+x^3) )); // G. C. Greubel, Aug 05 2019 (Sage) (x/(1-3*x+x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 05 2019 CROSSREFS Cf. A018919, A122099, A122100. Sequence in context: A000243 A076264 A018919 * A005774 A273343 A101169 Adjacent sequences: A123938 A123939 A123940 * A123942 A123943 A123944 KEYWORD nonn,easy,less AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 25 2006 EXTENSIONS Edited by N. J. A. Sloane, Nov 07 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 16:58 EDT 2024. Contains 372664 sequences. (Running on oeis4.)