The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000397 Number of partitions into non-integral powers.
(Formerly M4212 N1757)
2
6, 32, 109, 288, 654, 1337, 2506, 4414, 7379, 11822, 18273, 27356, 39938, 56974, 79607, 109267, 147523, 196295, 257715, 334407, 429086, 545034, 685917, 855886, 1059360, 1301776, 1588321, 1925620, 2320544, 2780468, 3314007, 3930001, 4638319, 5449943, 6376505, 7430471, 8625369, 9976540, 11498855, 13210238, 15128487, 17272896, 19664754, 22326319, 25280987, 28554486, 32173404, 36166409, 40563607, 45397395, 50701682, 56512012, 62866699, 69805531, 77370606, 85607286, 94560129, 104280410, 114819255, 126229853, 138570284, 151899428, 166278945, 181775849, 198456941, 216394746, 235661505, 256338017, 278503009, 302242623, 327644632, 354799834, 383805368, 414759214, 447764499, 482931051 (list; graph; refs; listen; history; text; internal format)
OFFSET
5,1
COMMENTS
a(n) counts the solutions to the inequality x_1^(1/2)+x_2^(1/2)+x_3^((1/2)<=n for any three distinct integers 1<=x_1<x_2<x_3. - R. J. Mathar, Jul 03 2009
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. K. Agarwala, F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
MAPLE
A000397 := proc(n) local a, x1, x2, x3 ; a := 0 ; for x1 from 1 to n^2 do for x2 from x1+1 to floor( (n-x1^(1/2))^2 ) do x3 := (n-x1^(1/2)-x2^(1/2))^2 ; if floor(x3) >= x2+1 then a := a+floor(x3-x2) ; fi; od: od: a ; end: for n from 5 do printf("%d, \n", A000397(n)) ; od: # R. J. Mathar, Sep 29 2009
MATHEMATICA
A000397[n_] := Module[{a, x1, x2, x3}, a = 0; For[x1 = 1, x1 <= n^2, x1++, For[x2 = x1+1, x2 <= Floor[(n-x1^(1/2))^2], x2++, x3 = (n-x1^(1/2) - x2^(1/2))^2 ; If[Floor[x3] >= x2+1, a = a + Floor[x3-x2]]]]; a]; Reap[ For[n = 5, n <= 40, n++, Print[an = A000397[n]; Sow[an]]]][[2, 1]] (* Jean-François Alcover, Feb 08 2016, after R. J. Mathar *)
CROSSREFS
Sequence in context: A090382 A360839 A102359 * A200765 A239573 A130410
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Sep 29 2009
More terms from Sean A. Irvine, Nov 14 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 06:35 EDT 2024. Contains 373492 sequences. (Running on oeis4.)