login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169793
Expansion of ((1-x)/(1-2*x))^6.
5
1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, 236640, 632448, 1661056, 4296192, 10961664, 27630592, 68889600, 170065920, 416071680, 1009582080, 2431254528, 5814222848, 13815054336, 32629850112, 76640681984, 179080003584, 416412598272, 963876225024
OFFSET
0,2
COMMENTS
a(n) is the number of weak compositions of n with exactly 5 parts equal to 0. - Milan Janjic, Jun 27 2010
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^6; see A291000. - Clark Kimberling, Aug 24 2017
LINKS
Robert Davis, Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
Nickolas Hein, Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
FORMULA
G.f.: ((1-x)/(1-2*x))^6.
For n > 0, a(n) = 2^(n-9)*(n+7)*(n^4 + 38*n^3 + 419*n^2 + 1342*n + 1080)/15. - Bruno Berselli, Aug 07 2011
MAPLE
seq(coeff(series(((1-x)/(1-2*x))^6, x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 16 2018
MATHEMATICA
CoefficientList[Series[((1 - x)/(1 - 2 x))^6, {x, 0, 27}], x] (* Michael De Vlieger, Oct 15 2018 *)
PROG
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-x)/(1-2*x))^6)); // G. C. Greubel, Oct 16 2018
(PARI) x='x+O('x^30); Vec(((1-x)/(1-2*x))^6) \\ G. C. Greubel, Oct 16 2018
CROSSREFS
Cf. for ((1-x)/(1-2x))^k: A011782, A045623, A058396, A062109, A169792-A169797; a row of A160232.
Sequence in context: A027312 A057222 A124641 * A054457 A000395 A005325
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 15 2010
STATUS
approved