|
|
A169793
|
|
Expansion of ((1-x)/(1-2*x))^6.
|
|
4
|
|
|
1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, 236640, 632448, 1661056, 4296192, 10961664, 27630592, 68889600, 170065920, 416071680, 1009582080, 2431254528, 5814222848, 13815054336, 32629850112, 76640681984, 179080003584, 416412598272, 963876225024
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is the number of weak compositions of n with exactly 5 parts equal to 0. - Milan Janjic, Jun 27 2010
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^6; see A291000. - Clark Kimberling, Aug 24 2017
|
|
LINKS
|
|
|
FORMULA
|
G.f.: ((1-x)/(1-2*x))^6.
For n > 0, a(n) = 2^(n-9)*(n+7)*(n^4 + 38*n^3 + 419*n^2 + 1342*n + 1080)/15. - Bruno Berselli, Aug 07 2011
|
|
MAPLE
|
seq(coeff(series(((1-x)/(1-2*x))^6, x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 16 2018
|
|
MATHEMATICA
|
CoefficientList[Series[((1 - x)/(1 - 2 x))^6, {x, 0, 27}], x] (* Michael De Vlieger, Oct 15 2018 *)
|
|
PROG
|
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-x)/(1-2*x))^6)); // G. C. Greubel, Oct 16 2018
(PARI) x='x+O('x^30); Vec(((1-x)/(1-2*x))^6) \\ G. C. Greubel, Oct 16 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|