The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058396 Expansion of ((1-x)/(1-2*x))^3. 20
 1, 3, 9, 25, 66, 168, 416, 1008, 2400, 5632, 13056, 29952, 68096, 153600, 344064, 765952, 1695744, 3735552, 8192000, 17891328, 38928384, 84410368, 182452224, 393216000, 845152256, 1811939328, 3875536896, 8271167488, 17616076800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If X_1,X_2,...,X_n are 2-blocks of a (2n+3)-set X then, for n>=1, a(n+1) is the number of (n+2)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007 Equals row sums of triangle A152230. - Gary W. Adamson, Nov 29 2008 a(n) is the number of weak compositions of n with exactly 2 parts equal to 0. - Milan Janjic, Jun 27 2010 Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^3; see A291000. - Clark Kimberling, Aug 24 2017 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Robert Davis, Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020. Nickolas Hein, Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018. Milan Janjic, Two Enumerative Functions Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019. M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013 M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5. Index entries for linear recurrences with constant coefficients, signature (6,-12,8). FORMULA a(n) = (n+2)*(n+7)*2^(n-4) for n > 0. a(n) = Sum_{k=0..floor((n+2)/2)} C(n+2, 2k)*k(k+1)/2. - Paul Barry, May 15 2003 Binomial transform of quarter squares A002620 (without leading zeros). - Paul Barry, May 27 2003 a(n) = Sum_{k=0..n} C(n, k)*floor((k+2)^2/4). - Paul Barry, May 27 2003 a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3), n > 3. - Harvey P. Dale, Oct 17 2011 MAPLE seq(coeff(series(((1-x)/(1-2*x))^3, x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 16 2018 MATHEMATICA CoefficientList[ Series[(1 - x)^3/(1 - 2x)^3, {x, 0, 28}], x] (* Robert G. Wilson v, Jun 28 2005 *) Join[{1}, LinearRecurrence[{6, -12, 8}, {3, 9, 25}, 40]] (* Harvey P. Dale, Oct 17 2011 *) PROG (PARI) Vec((1-x)^3/(1-2*x)^3+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012 (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-x)/(1-2*x))^3)); // G. C. Greubel, Oct 16 2018 CROSSREFS Cf. A045623, A001793, A152230. A diagonal of A058395. Sequence in context: A129589 A335472 A096322 * A006809 A081663 A245748 Adjacent sequences:  A058393 A058394 A058395 * A058397 A058398 A058399 KEYWORD nonn,easy AUTHOR Henry Bottomley, Nov 24 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 00:00 EDT 2021. Contains 345041 sequences. (Running on oeis4.)