login
A058397
Row sums of partition triangle A026820.
3
1, 3, 6, 13, 22, 42, 66, 112, 172, 270, 397, 602, 858, 1245, 1748, 2464, 3381, 4671, 6302, 8537, 11372, 15147, 19914, 26201, 34057, 44250, 56986, 73277, 93497, 119161, 150809, 190590, 239496, 300388, 374912, 467135, 579394, 717384, 884813
OFFSET
1,2
FORMULA
a(n) = Sum_{k=1..n} A026820(n, k).
a(n) = A278427(2n,n). - John P. McSorley, Nov 28 2016
MAPLE
seq(add(combinat:-numbpart(n, k), k=0..n), n=1..39); # Peter Luschny, Aug 03 2015
MATHEMATICA
T[n_, k_] := T[n, k] = If[n==0 || k==1, 1, T[n, k-1] + If[k>n, 0, T[n-k, k] ]];
a[n_] := Sum[T[n, k], {k, 1, n}];
Array[a, 39] (* Jean-François Alcover, Jun 03 2019, after Alois P. Heinz in A026820 *)
PROG
(PARI) a(n)=if(n<1, 0, polcoeff(sum(k=1, n, 1/prod(i=1, k, (1-x^i)), x*O(x^n)), n))
CROSSREFS
Sequence in context: A211870 A239987 A048134 * A174369 A308747 A022811
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Dec 11 2000
EXTENSIONS
More terms from Benoit Cloitre, Apr 21 2003
STATUS
approved