login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of ((1-x)/(1-2*x))^3.
22

%I #71 Sep 08 2022 08:45:02

%S 1,3,9,25,66,168,416,1008,2400,5632,13056,29952,68096,153600,344064,

%T 765952,1695744,3735552,8192000,17891328,38928384,84410368,182452224,

%U 393216000,845152256,1811939328,3875536896,8271167488,17616076800

%N Expansion of ((1-x)/(1-2*x))^3.

%C If X_1,X_2,...,X_n are 2-blocks of a (2n+3)-set X then, for n>=1, a(n+1) is the number of (n+2)-subsets of X intersecting each X_i, (i=1,2,...,n). - _Milan Janjic_, Nov 18 2007

%C Equals row sums of triangle A152230. - _Gary W. Adamson_, Nov 29 2008

%C a(n) is the number of weak compositions of n with exactly 2 parts equal to 0. - _Milan Janjic_, Jun 27 2010

%C Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^3; see A291000. - _Clark Kimberling_, Aug 24 2017

%H Harvey P. Dale, <a href="/A058396/b058396.txt">Table of n, a(n) for n = 0..1000</a>

%H Robert Davis and Greg Simay, <a href="https://arxiv.org/abs/2001.11089">Further Combinatorics and Applications of Two-Toned Tilings</a>, arXiv:2001.11089 [math.CO], 2020.

%H Nickolas Hein and Jia Huang, <a href="https://arxiv.org/abs/1807.04623">Variations of the Catalan numbers from some nonassociative binary operations</a>, arXiv:1807.04623 [math.CO], 2018.

%H Milan Janjic, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a>.

%H Milan Janjić, <a href="https://arxiv.org/abs/1905.04465">On Restricted Ternary Words and Insets</a>, arXiv:1905.04465 [math.CO], 2019.

%H Milan Janjic and Boris Petkovic, <a href="http://arxiv.org/abs/1301.4550">A Counting Function</a>, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013

%H Milan Janjic and Boris Petkovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Janjic/janjic45.html">A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers</a>, J. Int. Seq. 17 (2014), Article 14.3.5.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,8).

%F a(n) = (n+2)*(n+7)*2^(n-4) for n > 0.

%F a(n) = Sum_{k=0..floor((n+2)/2)} C(n+2, 2k)*k(k+1)/2. - _Paul Barry_, May 15 2003

%F Binomial transform of quarter squares A002620 (without leading zeros). - _Paul Barry_, May 27 2003

%F a(n) = Sum_{k=0..n} C(n, k)*floor((k+2)^2/4). - _Paul Barry_, May 27 2003

%F a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3), n > 3. - _Harvey P. Dale_, Oct 17 2011

%F From _Amiram Eldar_, Jan 05 2022: (Start)

%F Sum_{n>=0} 1/a(n) = 145189/525 - 1984*log(2)/5.

%F Sum_{n>=0} (-1)^n/a(n) = 30103/175 - 2112*log(3/2)/5. (End)

%p seq(coeff(series(((1-x)/(1-2*x))^3,x,n+1), x, n), n = 0 .. 30); # _Muniru A Asiru_, Oct 16 2018

%t CoefficientList[ Series[(1 - x)^3/(1 - 2x)^3, {x, 0, 28}], x] (* _Robert G. Wilson v_, Jun 28 2005 *)

%t Join[{1},LinearRecurrence[{6,-12,8},{3,9,25},40]] (* _Harvey P. Dale_, Oct 17 2011 *)

%o (PARI) Vec((1-x)^3/(1-2*x)^3+O(x^99)) \\ _Charles R Greathouse IV_, Sep 23 2012

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-x)/(1-2*x))^3)); // _G. C. Greubel_, Oct 16 2018

%Y Cf. A045623, A001793, A152230. A diagonal of A058395.

%K nonn,easy

%O 0,2

%A _Henry Bottomley_, Nov 24 2000