login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099621
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k+1) * 3^(n-k-1)*(4/3)^k.
4
0, 1, 6, 31, 144, 637, 2730, 11467, 47508, 194953, 794574, 3222583, 13023192, 52491349, 211161138, 848231779, 3403688796, 13647040225, 54685016022, 219030629455, 876994213920, 3510591943981, 14050213040826, 56224387958011
OFFSET
0,3
COMMENTS
In general a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k+1) * u^(n-k-1)* (v/u)^(k-1) has g.f. x^2/((1-u*x)*(1-u*x-v*x^2)) and satisfies the recurrence a(n) = 2*u*a(n-1) - (u^2-v)*a(n-2) - u*v*a(n-3).
FORMULA
G.f.: x^2/((1-3*x)*(1-3*x-4*x^2)).
a(n) = 6*a(n-1) - 5*a(n-2) - 12*a(n-3).
From G. C. Greubel, Jun 06 2019: (Start)
a(n) = (4^(n+2) - 5*3^(n+1) - (-1)^n)/20.
E.g.f.: (-exp(-x) - 15*exp(3*x) + 16*exp(4*x))/20. (End)
MATHEMATICA
Table[Sum[Binomial[n-k, k+1]3^(n-k-1) (4/3)^k, {k, 0, Floor[n/2]}], {n, 0, 25}] (* or *) LinearRecurrence[{6, -5, -12}, {0, 1, 6}, 30] (* Harvey P. Dale, Dec 13 2012 *)
Table[(4^(n+2)-5*3^(n+1)-(-1)^n)/20, {n, 0, 30}] (* G. C. Greubel, Jun 06 2019 *)
PROG
(PARI) vector(30, n, n--; (4^(n+2)-5*3^(n+1)-(-1)^n)/20) \\ G. C. Greubel, Jun 06 2019
(Magma) [(4^(n+2)-5*3^(n+1)-(-1)^n)/20: n in [0..30]]; // G. C. Greubel, Jun 06 2019
(Sage) [(4^(n+2)-5*3^(n+1)-(-1)^n)/20 for n in (0..30)] # G. C. Greubel, Jun 06 2019
(GAP) List([0..30], n-> (4^(n+2)-5*3^(n+1)-(-1)^n)/20) # G. C. Greubel, Jun 06 2019
CROSSREFS
Sequence in context: A291396 A012714 A094951 * A291002 A268401 A346226
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 25 2004
STATUS
approved